
MeTA1 README

Claus Aßmann

November 12, 2008

Contents

1 Introduction to MeTA1 6

1.1 MeTA1 is a Message Transfer Agent . 6

1.1.1 Main Components of MeTA1 . 6

1.2 Documentation . 7

1.2.1 Typographical Conventions . 7

1.3 Version . 8

1.4 Current State . 8

1.4.1 Providing Feedback . 8

1.5 For the Impatient . 8

2 Building, Testing, and Installing MeTA1 9

2.1 Verifying the Source Code Distribution . 9

2.2 Building MeTA1 . 9

2.2.1 Compile-Time Configuration Options . 10

2.3 Test Programs . 11

2.3.1 Environment Variables used by Test Programs . 11

2.3.2 Known Test Program Problems . 12

2.4 Installing MeTA1 . 13

2.4.1 Directories, Files, and Permissions . 14

2.4.2 Upgrading from earlier MeTA1 Versions . 15

3 Run-Time Configuration of MeTA1 16

3.1 Overview . 16

3.2 Configuration File Syntax . 16

3.2.1 Configuration File Values . 17

3.3 Example Configuration File . 17

1

3.4 Common Global Configuration . 18

3.5 Common Configuration Options . 18

3.6 Pathnames for Files, Directories, and Maps . 19

3.7 Configuration for MCP . 19

3.8 Configuration for QMGR . 21

3.8.1 Configuration Map for QMGR . 23

3.9 Configuration for SMAR . 24

3.9.1 Declaring Maps for SMAR . 24

3.9.2 Configuration Options for SMAR . 24

3.9.3 Configuration Maps for SMAR . 27

3.9.4 Greylisting . 31

3.10 Configuration for SMTP Server . 32

3.10.1 SMTP Server Session Configuration . 36

3.10.2 Multiple SMTP Servers with different Configurations 36

3.10.3 Protecting Recipients . 37

3.11 Configuration for SMTP Client . 38

3.11.1 SMTP Client Session/Recipient Configuration . 38

3.12 Lookup Orders . 38

3.12.1 Lookup Orders in Maps . 38

3.12.2 Lookup Orders for Anti-Spam Measures . 39

3.12.3 Macro Replacements in RHS . 41

3.13 STARTTLS Restrictions . 41

3.14 VERP . 42

4 Running MeTA1 43

4.1 Starting MeTA1 . 43

4.2 Using MeTA1 only for Outgoing Mail . 43

4.3 Using MeTA1 for Incoming Mail . 44

4.3.1 Local Delivery and Specifying Local Domains . 44

4.3.2 Specifying Valid Local Addresses . 44

4.4 Using MeTA1 as Gateway . 45

4.5 Using MeTA1 as Backup MX Server . 45

4.5.1 Note about Backup MX Servers . 45

4.6 Miscellaneous Programs . 46

2

4.6.1 Do not run programs as root User . 46

4.6.2 Displaying Content of Mail Queues . 46

4.6.3 Interacting with QMGR . 46

4.7 Reloading Maps . 46

4.8 Logging . 46

4.8.1 Logfile Rotation . 47

4.9 Regular Checks . 47

4.10 Dealing with Errors . 48

4.10.1 Resource Problems . 48

4.10.2 Database Problems . 48

4.10.3 Writing Core Dumps . 49

4.11 Replacements for Features available in other MTAs . 49

5 Policy Milter 50

5.1 Policy Milter Overview . 50

5.2 Native Policy Milter API . 50

5.2.1 Data Structures . 50

5.2.2 Start and Stop . 51

5.2.3 New SMTP Server . 51

5.2.4 SMTP Session and Transaction . 52

5.2.5 Set and Get pmilter Contexts . 53

5.2.6 Accessing MTA Symbols . 54

5.2.7 Sender Modification . 55

5.2.8 Recipient Modifications . 55

5.2.9 Header Modifications . 55

5.2.10 Message Replacement . 56

5.2.11 Further Capabilities . 56

5.2.12 Miscellaneous Functions . 57

5.2.13 Return Values . 58

5.2.14 Implementation Notes . 58

5.3 Policy Milter Examples . 58

5.3.1 Compiling Policy Milters . 59

6 Miscellaneous 60

3

6.1 Troubleshooting . 60

6.1.1 Startup Problems . 60

6.1.2 Logfile Entries . 60

6.2 Caveats . 61

6.3 Checks in SMTP Server . 61

6.3.1 Strict RFC Compliance . 61

6.3.2 Various Checks . 61

6.4 Security Checks . 62

6.5 Restrictions . 62

6.6 Code Review, Enhancements, Patches . 62

6.7 Porting . 62

6.8 Version Naming . 63

6.8.1 Snapshots . 63

7 Data Flow in MeTA1 64

7.1 Data Flow in MeTA1 . 64

8 Advanced Configuration Options 66

8.1 Overview . 66

8.1.1 Flags . 66

8.2 Advanced Configuration for MCP . 66

8.3 Advanced Configuration for QMGR . 67

8.4 Advanced Configuration for SMAR . 68

8.5 Advanced Configuration for SMTP Server . 68

8.6 Advanced Configuration for SMTP Client . 69

9 Tuning 70

9.1 Size of Queues, Caches, and Databases . 70

9.2 Disk I/O . 70

9.3 Processes and Threads . 71

10 Format Specifications 72

10.1 Socket Map . 72

10.2 Format of Session/Transaction Identifiers . 73

10.3 Logfile Format . 73

4

10.4 Format of Received Header . 74

10.5 Format of DSNs . 75

11 Setup for STARTTLS 76

11.1 Certificates for STARTTLS . 76

12 More About Configuration, Compilation, Debugging, and Testing 77

12.1 Compile Time Options . 77

12.1.1 Generic . 77

12.1.2 QMGR . 77

12.1.3 SMAR . 77

12.1.4 SMTPS . 78

12.1.5 Debugging Compile Time Options . 78

12.2 Possible Compilation Problems or Warnings . 79

12.3 More About Test Programs . 79

12.3.1 More Environment Variables used by Test Programs 79

12.3.2 Other Potential Problems with Test Programs . 79

13 Licenses 81

5

Chapter 1

Introduction to MeTA1

1.1 MeTA1 is a Message Transfer Agent

This distribution contains the source code for MeTA1 which implements a message transfer agent (MTA).
It supports the Simple Mail Transfer Protocol (SMTP) as specified by RFC 2821 [Kle01] and various
extensions, e.g., STARTTLS [Hof99], AUTH [Mye99], PIPELINING [Fre00], as well as other protocols,
e.g., LMTP [Mye96].

MeTA1 is intended to be used as a secure and efficient mail gateway. It does not provide any mail
content modification capabilities, e.g., masquerading of addresses or changing (addition, removal) of
headers. Later versions will probably add such capabilities.

1.1.1 Main Components of MeTA1

MeTA1 is a modularized message transfer agent consisting of five (or more) persistent processes, four
of which are multi-threaded. A central queue manager (QMGR) controls SMTP servers (SMTPS) and
SMTP clients (SMTPC) to receive and send e-mails, an address resolver (SMAR) provides lookups in
various maps including DNS for mail routing, and a main control program (MCP) starts the others
processes and watches over their execution. The queue manager organizes the flow of messages through
the system and provides measures to avoid overloading the local or remote systems by implementing a
central control instance.

More information about each component will be given in the appropriate sections. Complete docu-
mentation and background information can be found in [Aßmb]. Section 7.1 describes the data flow in
MeTA1, the following is a brief summary. Figure 1.1 shows the interaction of the various components and
databases1. Incoming messages are accepted by an SMTP server (SMTPS) which stores the messages
in the content database (CDB). The envelope information, i.e., sender and recipients, is stored by the
queue manager in an incoming queue (IQDB) and written to disk to the incoming queue backup database
(IBDB). For a delivery, the envelope information must be transferred into the active queue (AQ). The
scheduler in QMGR takes recipient envelopes from AQ and creates transactions which are given to an
SMTP client (SMTPC) for delivery. An SMTP client takes the transaction information and tries to send
a message whose content is read from CDB. After a successful delivery attempt a record is written to
IBDB that logs this information. The deferred envelope database (DEFEDB) is only used if a message

1the term database is used loosely here

6

cannot be delivered during the first attempt.

SMTPS

SMAR

SMTPC

LDA

QMGR

MCP

DEFEDBIBDB

CDB

IQDB

AQ

Figure 1.1: MeTA1: Overall Structure

This version of MeTA1 does not come with a local delivery agent nor a mail submission program. See
Sections 4.3.1 and 4.2 which programs can be used to achieve the desired functionality.

1.2 Documentation

The document “sendmail X: Requirements, Architecture, and Functional Specification” [Aßmb] provides
the background about the MeTA1 design, its architecture, as well as the functional specification, and
details about the implementation.

1.2.1 Typographical Conventions

In this documentation, a command written as

$ command

7

should be executed as an unprivileged user. Only a command written as

command

should be executed as the superuser.

If a command contains components that need to be replaced by values that depend on the environment
or the local configuration, then it is usually written as a macro, e.g., $LOGFILE.

A number in parentheses behind a command or function refers to the manual section, e.g., syslog(3),
as it is usual for Unix documents.

1.3 Version

This document has been written for MeTA1-1.0.PreAlpha27.0, see also the greeting of the SMTP server
and the version output of the main components. See Section 6.8 for information about version naming.

1.4 Current State

There are still some error conditions which may not be handled gracefully, i.e., in case of some resource
problems (e.g., out of memory or out of disk space) the system may abort; however, this is common for
most open source MTAs which simply abort if they are running out of memory. See Section 4.10.1 how
to deal with those conditions. The software is running since 2004-01-01 as MTA on the main machine of
the author without any significant problem, i.e., it never lost any mail.

1.4.1 Providing Feedback

Please report bugs and provide feedback either to the developers list[Aßma] (if you are subscribed) or
directly to2:

< MeTA1 + feedback (at) MeTA1 . org >

Feedback about the code, the documentation (including typographical, syntactical, and grammatical
errors, pointing out parts that are not well enough explained, etc.), as well as patches and enhancements
are highly appreciated.

1.5 For the Impatient

For those who do not want to read the entire documentation, it is adviced to read at least sections 2.2
and 2.4, and the appropriate section of Chapter 4.

2Sorry for the obfuscation, replace (at) with @ and remove the spaces, but not the plus sign.

8

Chapter 2

Building, Testing, and Installing
MeTA1

2.1 Verifying the Source Code Distribution

The source code is distributed as a (compressed) tar file and is accompanied by a PGP signature file
which has the same name as the tar file plus the ending .sig. To verify the integrity of the source code
PGP [PGP] or GPG [Gnu] are required as well as the MeTA1 PGP signing key [MeT]:

$ gpg --verify meta1-$VERSION.tar.gz.sig

or:
$ pgp meta1-$VERSION.tar.gz.sig meta1-$VERSION.tar.gz

Further information, especially about warnings or possible errors, can be found in the documentation for
PGP or GPG.

2.2 Building MeTA1

MeTA1 uses a configure file generated by GNU autoconf for configuration. Hence you can build it (after
verifying and unpacking the distribution) as follows:

$ mkdir obj.$OS && cd obj.$OS && $PATHTO/meta1-$VERSION/configure $OPTIONS \

&& make && make check

Obviously you have to replace $OS, $VERSION, $OPTIONS, as well as $PATHTO. It is also possible to build
MeTA1 in the source tree, however, this is discouraged:

$./configure && make && make check

Notes: do not run this as root; this is not just a basic security measure (only use a privileged account if
it is really required), but most of the programs refuse to run with root privileges. It might be useful to
save the output of these commands1 for later inspection.

1using script(1) or redirecting it to some file.

9

2.2.1 Compile-Time Configuration Options

Beside the usual configure options like --prefix a few MeTA1 specific configuration options are avail-
able:

--enable-TLS Enable check for STARTTLS support. The default is yes, i.e., configure tries to
determine whether OpenSSL is available on the machine. Requires OpenSSL 0.9.6 or newer [Ope].
Note: check the OpenSSL website [Ope] for security announcement and be aware that due to the
complexity of the software it may cause (security) problems.

--enable-SASL Enable check for AUTH support. The default is yes, i.e., configure tries to determine
whether Cyrus SASL v2 is available on the machine. Requires Cyrus SASL version 2.1.18 or newer
[Cyr]. Notes:

1. check http://asg.web.cmu.edu/cyrus/ and http://asg.web.cmu.edu/sasl/ for security
announcement and be aware that due to the complexity of the software it may cause (security)
problems.

2. If Cyrus SASL uses Berkeley DB then it is necessary that the version which has been used
during compilation matches the version that it is linked against.

--with-sasl-libdir=path Path to directory containing Cyrus SASL v2 library.

--with-sasl-incdir=path Path to directory containing Cyrus SASL v2 include files.

--disable-included-bdb MeTA1 ships with a modified version of Berkeley DB 4.3.28 which is built
and used by default. To use a different version of Berkeley DB (it must be 4.3, 4.2, or 4.1), e.g.,
one that is part of the host OS, specify --disable-included-bdb.

Notes:

1. If you do not use the Berkeley DB version that comes with MeTA1, make sure you run all the
tests. For example, with Berkeley DB 4.2.50 on OpenBSD 3.2/i386 at least one of the test
programs fails and hence this combination must not be used. Moreover, if you encounter a
problem using some other BDB version then you must try to reproduce the problem with the
shipped version before reporting a possible bug.

2. Do not use Berkeley DB 4.3.27/28 in 64 bit mode on Solaris 5.8/9 as it crashes at least in
those configurations2. This bug is fixed in the version that is distributed with MeTA1.

--with-bdb-libdir=path Path to directory containing Berkeley DB library. This option is only needed
if --disable-included-bdb is used and Berkeley DB is not installed in a location that the compiler
or linker use by default. Note: configure currently checks only for a static library.

--with-bdb-incdir=path Path to directory containing Berkeley DB include files. This option is only
needed if --disable-included-bdb is used and Berkeley DB is not installed in a location that the
compiler uses by default. Example:

$ B=/usr/local/BerkeleyDB.4.3

$ $PATHTO/meta1-$VERSION/configure --with-bdb-libdir=$B/lib \

--with-bdb-incdir=$B/include --disable-included-bdb

--enable-pmilter Enable policy milter protocol, see Chapter 5.

2“Private database environments on 64-bit machines no longer drop core because of 64-bit address truncation. [11983]”
[Slea]

10

--enable-mspEnable a simple mail submission program (MSP) that is currently not supported (located
in contrib/). This is just a helper program for those who do not want to install a different MSP
but need only some basic functionality (which does not include a queueing mechanism). Note: this
will install the MSP as sendmail thus overriding any existing program of that name (as well as a
man page).

--enable-tinycdb Enable support for cdb map type, based on tinycdb 0.75 [Tok].

To get the current list of configuration options, use configure --help.

2.3 Test Programs

$ make check

will run all test programs; currently those tests take about eighty minutes to run on a standard work-
station. For each of the test programs one line is printed to denote whether the test succeeded, i.e., the
output consists of lines with the marker PASS: or FAIL: and the name of the test program program.
Additional output might be generated by the test programs themselves, e.g.,

2 of 2 tests completed successfully,

or some debug output. The debug output may even indicate an error, but only a final FAIL: indicates
a test failure. Some tests depend on compilation options and are only conditionally enabled; others may
depend on environment variables, see 2.3.1. For disabled tests SKIP is shown.

Since some of the tests may fail (see Section 2.3.2) and make will usually stop after encountering an error,
it might be required to use

$ make -i check >check.out 2>&1

to perform all tests.

2.3.1 Environment Variables used by Test Programs

Environment variables can be used to disable some test programs if required or change the behavior of
some test programs. These environment variables and their effects are:

• MTA_NO_DNS_TEST: disable tests that perform DNS lookups. These lookups may use domains that
are under control of the MeTA1 author.

• MTA_DNS_TIMEOUT: can be used to set a different timeout than the default, however, it may not be
obeyed by all DNS test programs.

• MTA_TEST_DNS_TIMING: run DNS tests that are timing dependent and may fail under certain con-
ditions (e.g., network too slow).

• MTA_TIMING: run MTA tests that are timing dependent and may fail under certain conditions.

• MTA_STOPONERROR: causes most test scripts that perform multiple checks to stop on the first error
that occurs instead of performing all checks.

11

• MTA_NO_LOG_TEST: disables some tests that use syslog(3).

• MTA_NO_SLOW_TEST: disables some tests that take a very long time.

In this example the DNS timeout is set to 60 seconds and tests that take a very long time are disabled:

$ MTA_DNS_TIMEOUT=60

$ MTA_NO_SLOW_TEST=1

$ export MTA_DNS_TIMEOUT MTA_NO_SLOW_TEST

$ make -i check

2.3.2 Known Test Program Problems

• connctl.sh will fail on systems that have neither inet pton(3) nor inet aton(3). Fix: upgrade
your OS or write a replacement function and put it into librepl/.

• t-evthr-slp can fail in some circumstances if the OS is busy with other tasks as it depends on the
OS scheduler. Fix: just rerun the test.

• t-evthr-sig.sh fails on Linux systems that use a thread implementation that is not POSIX com-
pliant. The test is currently disabled on all Linux versions. Note: if you know a simple way to
figure out whether the OS actually provides POSIX compliant pthreads, please let me know.

• t-hostname fails on systems where gethostname() does not return any FQHN at all (e.g., default
SunOS 4/5 installations). Add the FQHN as alias to /etc/hosts (see hosts(5) to solve this
problem, e.g.,

10.1.2.3 myname myname.my.domain

or

10.1.2.3 myname.my.domain myname

• t-parsesockstr fails on systems like AIX which treat an empty string as a valid IP address in
inet addr(3).

• t-mts-icr.sh and t-mts-ocr-?.sh try to test incoming/outgoing rate control. They rely on the
time it takes to send/receive mails which may not work on machines that are significantly slower
or faster than the machines available to the author.

• t-smar-0.sh, t-smar-3.sh, and t-dns-1.sh may fail sometimes due to DNS timeouts. Run the
tests again or increase the DNS timeout, see Section 2.3.1.

Note: DNS related test programs may fail if the first nameserver entry in /etc/resolv.conf does not
respond properly (and reasonably fast) to DNS queries. See Section 12.3.1 how to override the default
nameserver selection: MTA_NAMESERVER.

For more information about possible test program problems see Section 12.3.2. For problems with pro-
grams in the contrib/ directory, see contrib/README.

12

2.4 Installing MeTA1

MeTA1 needs several users to provide separation of privileges and to enhance security. Currently there
are four required accounts (the numbers for uid and gid are examples only); the last one listed below
(meta1) is not really required:

meta1s:*:260:260:meta1 SMTPS:/nonexistent:/sbin/nologin

meta1q:*:261:261:meta1 QMGR:/nonexistent:/sbin/nologin

meta1c:*:262:262:meta1 SMTPC:/nonexistent:/sbin/nologin

meta1m:*:263:263:meta1 misc:/nonexistent:/sbin/nologin

meta1:*:264:264:meta1 other:/nonexistent:/sbin/nologin

with the corresponding groups:

meta1s:*:260:

meta1q:*:261:

meta1c:*:262:meta1s

meta1m:*:263:meta1s,meta1q

meta1:*:264:

Note: on some operating systems the star character is not a valid value for the password field. Check
passwd(5)3 to determine which value to use to disable the password.

To check whether the required users and groups exist, run

$./misc/sm.check.sh -p

(in the build directory); see below how to override the default values for the user and group names.

A shell script to setup the directories, files, etc. as described below is available in misc/sm.setup.sh.in.
This script is modified by configure to create misc/sm.setup.sh (in the build directory) which is
invoked when

make install

is called. Most defaults in the installation script misc/sm.setup.sh can be overridden with environment
variables (default is listed in square brackets):

• MTACONFDIR: [/etc/meta1] configuration directory.

• MTAQDIR: [/var/spool/meta1] queue directory; communication sockets are created in this directory
by default too.

• MTALOGDIR: [.] logging directory (relative to MTAQDIR). If logging is done via syslog(3) then this
directory is not used.

• MTAS [meta1s] SMTP Server user and group.

• MTAC [meta1c] SMTP Client user and group.

• MTAQ [meta1q] QMGR user and group.

3On some systems the man page is in another section, e.g., 4.

13

• MTAM [meta1m] address resolver (misc) user and group.

• MTA [meta1] generic (configuration etc) user and group.

• MTALG group for logfiles; the install program tries operator, sysadmin, and root.

Important Notes:

1. The users and groups must be created before make install is invoked.

2. misc/sm.setup.sh will not overwrite existing files or directories, hence it does not work for up-
grading a system if configuration files or directory/file owners need to changed.

2.4.1 Directories, Files, and Permissions

make install (i.e., misc/sm.setup.sh) will create all the required directories and files with the correct
permissions provided the users and groups have been set up properly. This section explains what the
created structure looks like.

The CDB directories (0-9, A-F) must be owned by meta1s and have group meta1q with the permissions
0771:

drwxrwx--x 2 meta1s meta1q 0/

Note: this means that everyone with access to the machine can guess the name of content files (see
Section 10.2 for the format; the names can also be read from the logfiles if those are world-readable) and
list (ls(1)) them, however, they cannot access the content files as those are owned by meta1s with mode
0640 and group meta1c, e.g.,

-rw-r----- 1 meta1s meta1c 1993 Jul 9 21:19 2/S000000000006B1D200

The main (DEFEDB) and incoming queues (IBDB) must belong to meta1q and should not accessible by
anyone else:

drwx------ 2 meta1q meta1q defedb/

drwx------ 2 meta1q meta1q ibdb/

drwx------ 2 meta1q meta1q ibdb/ibdb/

Mailertable, aliases map, and other maps for SMAR (see Section 3.9.3) should belong to meta1m and can
be readable as local conventions require:

-rw-r--r-- 1 meta1m meta1m mt

-rw-r--r-- 1 meta1m meta1m aliases.db

In general, maps should be owned by the user id of the program that uses them, e.g., meta1q owns the
QMGR configuration map qmgr conf.db (see Section 3.8.1).

The meta1 configuration file can either belong to root or the generic meta1 user:

14

-rw-r--r-- 1 meta1 meta1 meta1.conf

The directories in which the communication sockets between QMGR and the other programs are located
must belong to meta1q and be group accessible for the corresponding program:

drwxrws--- 2 meta1q meta1m qmsmar/

drwxrws--- 2 meta1q meta1c qmsmtpc/

drwxrws--- 2 meta1q meta1s qmsmtps/

The directory in which the communication socket between MCP and SMTPS is located must belong to
meta1s:

drwxr-x--- 2 meta1s meta1s smtps/

The logfiles must be owned by the corresponding user and may have relaxed group (or even world) read
permissions:

-rw-r----- 1 meta1q operator qmgr.log

-rw-r----- 1 meta1m operator smar.log

-rw-r----- 1 meta1c operator smtpc.log

-rw-r----- 1 meta1s operator smtps.log

To check whether an installation was successful, run

./misc/sm.check.sh -P

(in the build directory). Note: this script uses the same environment variables as the installation script.

2.4.2 Upgrading from earlier MeTA1 Versions

Currently there is no support for automated upgrades. If you have an earlier version of MeTA1 installed
and want to upgrade, here are some tips (note: all programs should be run from the build directory
unless mentioned otherwise):

• To check whether an installation was successful, run

./misc/sm.check.sh -P

• To check whether the configuration file needs changes, run

$./misc/smconf /etc/meta1/meta1.conf

If the file is syntactically invalid for this version of MeTA1 the program will show those errors. Use
-h as argument to see the available option, e.g., -u might be useful.

15

Chapter 3

Run-Time Configuration of MeTA1

3.1 Overview

Configuration of MeTA1 can be done via command line parameters or via a configuration file (the latter is
preferred, the former offers only a small subset of the available configuration options). If a configuration
file and command line options are specified, then the options are currently processed in order, i.e., later
settings override earlier ones for the same options. Information about the former is available by invoking
a program with the option -h (MCP currently uses syslog(3) instead of stderr), it will show the usage
as well as the default values. The syntax of the configuration files is specified in the following sections.
To actually use a configuration file, the option -f $CONFIGFILE must be used, otherwise the programs
use only the built-in default values, but not a configuration file. Option ’-V’ can be used to show version
information, specifying ’-V’ multiple times shows more detail, e.g., ’-VVVVV’ will show the configuration
data including the default value for (almost) every option, and ’-VVVVVV’ will also show all available flags.

Some configuration options can be set via maps, these maps are: qmgr conf for QMGR (see Section
3.8.1) and access for SMTPS (indirectly via the address resolver, see Section 3.9.3).

3.2 Configuration File Syntax

The grammar for a MeTA1 configuration file is very simple:

conf ::= entries
entries ::= entry *
entry ::= option | section
section ::= keyword [name] ”{” entries ”}” [”;”]
option ::= option-name ”=” rhs
rhs ::= value ”;” | ”{” value-list ”}” [”;”]

A configuration file consists of entries, each entry is either an option or a section. An option has a name,
an equal sign, and a value terminated by a semicolon or a (bracketed) list of values separated by comma1.
A section consists of a keyword, an optional name, and a (bracketed) sequence of entries. Keywords and
options are not case sensitive. The layout of a configuration file does not matter, i.e., indentation and
line breaks are irrelevant (in general, but see below for strings).

1A trailing comma is allowed to make writing of lists simpler.

16

3.2.1 Configuration File Values

Values in a configuration file are usually strings or numbers. If a string is used, then it should be quoted,
unless it contains no special characters which are treated specially by the grammar. If a string is very
long it can be broken into substrings spread out over several lines (just like strings in ANSI C), e.g.,

somemessage = "this is a very long string which is spread "

"out over several lines because otherwise it is too "

"hard too read.";

Numeric values can have the usual prefixes (known from the programming language C) of 0x for hex-
adecimal (with digits 0 to 9, A to F, and a to f) and 0 for octal (with digits 0 to 7). Valid boolean values
are 0, false, off for false, and 1, true, on for true (case insensitive).

In some cases it is possible to have units for values. Currently time and size values make use of this
feature. Valid time units are w for weeks, d for days, h for hours, m for minutes, and s for seconds. Valid
units for size are B for bytes, KB for kilo bytes, MB for mega bytes, and GB for giga bytes. It is allowed to
specify a sequence of numbers and units, e.g., 1h 5m 12s. Unless otherwise specified, the default units
for times and sizes in a configuration file are s and B, respectively; for those values these units can be
used.

3.3 Example Configuration File

The installation script creates the file meta1.conf in the configuration directory (/etc/meta1, see Section
2.4). Check the comments in the file and edit it if required. A configuration file for meta1 contains several
sections: a global section which specifies the locations of sockets and directories that are used by multiple
components, and one section each for QMGR, SMAR, SMTP server, and SMTP client. Other sections
may define services that are started by MCP, e.g., a local mailer.

CDB_base_directory = "/var/spool/meta1/";

qmgr {

AQ_max_entries = 8192;

smtpc { initial_connections = 19; max_connections = 101; }

smtps { max_connections = 5; max_connection_rate=160; }

max_errors_per_DSN=16;

wait_for_server = 4; wait_for_client = 4;

start_action = wait; user = meta1q;

restart_dependencies = { smtps, smtpc, smar };

path = "/usr/libexec/qmgr"; arguments = "qmgr -f /etc/meta1/meta1.conf";

}

smtps { flags = {8bitmime}; CDB_gid = 261; IO_timeout = 5m3s;

listen_socket { type = inet; port = 25; }

start_action = pass; pass_fd_socket = smtps/smtpsfd;

user = meta1s; path = /usr/libexec/smtps;

arguments = "smtps -f /etc/meta1/meta1.conf"; }

smtpc {

17

Log_Level = 12; IO_timeout = 6m; wait_for_server = 4;

start_action = wait; user = meta1c; path = "/usr/libexec/smtpc";

arguments = "smtpc -f /etc/meta1/meta1.conf"; }

smar {

Log_Level = 12;

nameserver = {10.10.10.9, 127.0.0.1};

DNS_timeout = 6;

start_action = wait; user = meta1m; restart_dependencies = { smtps, qmgr };

path = "/usr/libexec/smar"; arguments = "smar -f /etc/meta1/meta1.conf";

}

3.4 Common Global Configuration

All of the following options have defaults and should only be changed if necessary.

1. hostname: set the hostname to use for the various components. This can be set if gethostbyname(3)
does not return a valid (fully qualified) hostname (format: string).

2. CDB_base_directory: base directory of CDB (format: string); this should either be empty (which
is the default) or a path to a directory including a trailing slash; the CDB library currently simply
appends the directory names (see Section 2.4.1) to it. It might be useful to move some subdirectories
to different disks (by creating (symbolic) links (ln(1))) to spread the I/O load.

3. SMAR_socket: socket created by the address resolver over which clients (SMTPS, QMGR) can send
requests (format: string).

4. SMTPC_socket: communication socket between SMTPC and QMGR (format: string).

5. SMTPS_socket: communication socket between SMTPS and QMGR (format: string).

The sockets are currently Unix domain sockets only, hence the value is simply the pathname of the socket.

3.5 Common Configuration Options

There is currently one configuration option which is the same across all modules but is not specified in
the global section because it is specific to the individual modules.

1. log: this is a section with the following options:

(a) facility: see syslog(3) for valid facilities, here are some valid options provided the OS offers
them: daemon, mail, auth, local0, etc.

(b) ident: identification string for openlog(3), defaults to name of the modules. It might be
useful to chose other identifiers, e.g., MeTA1 or MeTA1QMGR.

(c) options: options for openlog(3) (without the leading LOG) as provided by the OS, e.g., pid
or ndelay.

Example:

18

qmgr { log { facility = daemon; ident=meta1-qmgr; } }

smtps { log { facility = mail; ident=meta1-MTA; } }

Note: debug output is currently sent to stdout; syslog(3) is not used for debugging.

All modules have an option to set the amount of logging (log_level) that should be done. The larger
the value the more information is logged. For normal operation a value of 9 is recommended. During
testing values of 12 to 14 are useful.

3.6 Pathnames for Files, Directories, and Maps

Most names of files (including maps) and directories in the configuration file have a default name (compiled
into the binary) without an absolute path, e.g., aliases.db. If a pathname is not explicitly set in the
configuration file or does not use a absolute path (i.e., begins with a slash), then the default is relative
to either

1. the configuration directory: maps and configuration files, e.g., aliases.db and cert_file.

2. the main queue directory: pathnames of sockets, and databases to store envelope information
(IBDB, DEFEDB) or message contents (CDB).

The paths for files mentioned in case 1 are taken relative to the path of the configuration file which is
passed via the -f option to the various modules. For example: if SMAR is started as

/usr/libexec/smar -f /etc/meta1/meta1.conf

then the pathname used for the aliases map is /etc/meta1/aliases.db. This applies to the SMAR maps
aliases, mailertable, and access (3.9.2), the QMGR qmgr conf map (3.8.1), and the STARTTLS related
files and directories used by the SMTP server (3.10) and client (3.11).

The paths for files mentioned in case 2 are taken relative to the execution directory. All MeTA1 modules
should be started (via MCP) in the main queue directory (default: /var/spool/meta1, see Section 2.4).

See the various configuration options explained below how to override the defaults. Note: relative path-
names specified in the configuration file are (currently) always relative to the main queue directory.

3.7 Configuration for MCP

Every section in a MeTA1 configuration file that refers to one of its four main components (QMGR,
SMTPS, SMTPC, and SMAR; see Section 1.1.1) has some options that are relevant for MCP. These
MCP options are:

1. start_action: one of nostartaccept, accept, pass, wait (required).

2. listen_socket: this is a subsection that specifies the socket on which a process should listen. It
must be specified for any start_action except wait. There are two different socket types available:

(a) type = inet

i. port: port number on which process should listen (format: numeric).

19

ii. address: IP address on which process should listen, if none is specified the process listens
on all local (IPv4) addresses (format: IPv4 address).

(b) type = unix

i. path: pathname of Unix Domain socket on which process should listen (format: string).

ii. umask: umask for socket (format: numeric).

iii. user: owner of socket (format: string).

iv. group: group of socket (format: string).

3. pass_fd_socket: pathname of Unix Domain socket to pass a file descriptor to the process.

4. user: user name to run process.

5. group: group name to run process.

6. restart_dependencies: list of other MeTA1 components that need to be restarted when this one
is restarted (or crashes).

7. path: path to program to execute (required).

8. arguments: arguments (argv), must start with name of program, see execv(2) (required).

9. pass_id: option to use to pass a unique, numeric identifier to the spawned process via the command
line. The option will be inserted as first argument. Example:

smtpc { pass_id = "-i"; min_processes = 4; max_processes = 4;

path = /usr/libexec/smtpc; arguments = "smtpc -f meta1.conf"; }

will cause MCP to start four smtpc processes, each with the options -i ID -f meta1.conf where
ID is replaced with a unique identifier.

Notes about start_action:

• For start_action = pass the option pass_fd_socketmust be specified; in this case MCP binds to
the specified socket (listen_socket) and passes it via the Unix domain socket (pass_fd_socket)
to the started process.

• For start_action = nostartaccept MCP waits for incoming connections, and then starts a pro-
cess to handle a single connection.

• For start_action = accept MCP binds to the socket and then starts a process to handle the
connections without waiting for an actual request.

• For start_action = wait MCP simply starts the requested number of processes without passing
them any open connections. This is intended for processes that do not communicate with external
clients.

MCP is currently a generic control program that does not have any builtin knowledge about the various
MeTA1 modules. Hence the MCP options for each MeTA1 component must be specified properly, there
are no builtin defaults that could be associated with the functionality of the various MeTA1 modules.
The default configuration file created by the installation program contains the correct defaults. These
should only be changed if really necessary.

20

3.8 Configuration for QMGR

The following configuration options are valid for QMGR:

1. AQ_max_entries: maximum number of entries in AQ (active queue) (unit: entries). Note: this
value must be larger than the largest number of recipients accepted by a single transaction.

2. conf: name of configuration map (including extension), see Section 3.8.1 for details. See also
Section 3.6 about relative pathnames.

3. control_socket: specify pathname of “control” socket (for querying and making requests). This
socket can be used by the query/control program qmgrctl, see Section 4.6.3.

4. subsection DEFEDB:

(a) base_directory: home directory for DEFEDB.

(b) log_directory: log directory for DEFEDB. For better performance, this directory can be set
to point to a different disk than the base directory of DEFEDB.

5. subsection DSN_handling:

(a) merge_delay_max: maximum time to wait for merging multiple DSNs into one (unit: s).

(b) flags: configuration flags:

i. header_only: include only the headers in a DSN; by default the first bounce includes the
entire message and subsequent ones include only the headers.

ii. MIME_Format: use MIME to structure a DSN. Note: this is not (yet) a DSN in the format
specified by RFC 3464 [MV03].

(c) max_errors_per_DSN: maximum number of error messages (failed recipients) in a bounce
(DSN) (unit: entries).

6. double_bounce_address: RFC 2821 address for double bounces; defaults to <postmaster@hostname>.

7. subsection IBDB:

(a) max_commit_delay: maximum time between commits to IBDB (unit: µs)

(b) size: maximum size of each IBDB file (unit: B).

(c) max_open_TAs: maximum number of open transactions in IBDB before a commit is performed
(unit: entries).

Note: the configuration file offers no way to specify a base directory for IBDB, however, the directory
can be easily moved elsewhere and a (symbolic) link (ln(1)) can be added.

8. subsection IQDB:

(a) max_cache_entries: maximum number of entries in IQDB cache (unit: entries). This must
be larger than the sum of all recipients in open transactions.

(b) hash_table_entries: size of hash table for IQDB (unit: entries). This must be larger than
max_cache_entries.

9. log_level: logging level.

10. min_disk_space: minimum amount of free disk space (unit: KB). This value should be significantly
larger than the maximum size of a message to be accepted by the SMTP server, it should be as
large as the maximum message size multiplied by the maximum number of incoming connections.

21

11. OCC_max_entries: size of outgoing (SMTPC) connection cache (unit: entries). This should be
large enough to keep track of outgoing connections over a time span that is at least as long as the
maximum retry time.

12. ok_disk_space: amount of free disk space at which normal operation continues (unit: KB). Must
be larger than min_disk_space.

13. queue_return_timeout: maximum time in queue (unit: s).

14. queue_delay_timeout: send delay warning (“delayed DSN”) if the mail is still in the queue af-
ter at least this duration (unit: s). To turn off delayed DSNs set this to a value bigger than
queue_return_timeout. Note: based on the retry schedule the delayed DSN might be sent later
than the option specifies.

15. retry_max_delay: maximum time for retrying a delivery (unit: s).

16. retry_min_delay: minimum time for retrying a delivery (unit: s).

17. subsection smtpc:

(a) initial_connections: maximum initial number of outgoing connections to a single host
(unit: entries). The sliding window for the slow start algorithm (see Section 3.8.1) is initialized
with this value.

(b) max_connections: maximum number of outgoing connections to a single host (unit: entries).

(c) lmtp_max_rcpts_per_transaction: maximum number of recipients per transaction for mail
sent via LMTP (unit: entries).

(d) smtp_max_rcpts_per_transaction: maximum number of recipients per transaction for mail
sent via (E)SMTP (unit: entries).

(e) flags: configuration flags:

i. lookup_rcpt_conf: Look up recipient configuration data (see Section 3.11.1) in the access
map (see Section 3.9.3)

ii. lookup_session_conf: Look up session configuration data (see Section 3.11.1) in the
configuration map (see item 2).

(f) rcpt_conf_lookup_flags: If recipient configuration data (see item 17(e)i) is looked up in the
access map, then these flags determine which kind of lookups should be performed.

i. full_adress: use the full address as key.

ii. detail_plus: lookup also “user++@subdomain”.

iii. detail_star: lookup also “user+*@subdomain”.

iv. star: lookup also “user*@subdomain”.

v. domain: lookup domain part.

vi. dotsubdomain: iterate through subdomains.

vii. dot: lookup also “.”.

The default is to perform all lookups.

18. subsection smtps:

(a) max_connection_rate: maximum incoming connection rate from a single host (unit: connec-
tions/60s).

(b) max_connections: maximum number of open incoming connection from a single host (unit:
entries).

19. wait_for_client: maximum amount of time to wait for a client to become available (unit: s)

20. wait_for_server: maximum amount of time to wait for a server to become available (unit: s)

22

3.8.1 Configuration Map for QMGR

QMGR implements a “slow start” algorithm to control the number of concurrent connections to one IP
address. Initially, it will at most create a (small) number of open connections up to a specified initial
limit. For each successful delivery, the allowed number is increased up to specified maximum limit.

For incoming connections, QMGR establishes two limits: the connection rate and the number of open
connections.

The Berkeley DB hash map qmgr conf.db (the file should be owned by meta1q) can have the following
entries:

1. oci: this key specifies the initial number of concurrent outgoing connection to an IP address.

2. ocm: this key specifies the maximum number of concurrent outgoing connection to an IP address.

3. octo: specify the timeout for an entry in the outgoing connection cache.

4. icr: this key specifies the maximum rate for incoming connections (per 60s).

5. icm: this key specifies the maximum number of concurrently open incoming sessions.

6. smtpc session conf: see Section 3.11.1

oci:, ocm:, icr:, icm:, and smtpc session conf: take an IP address/net as parameter such that the
limits can be imposed per IP address/net. For example:

oci:127.0.0.1 5

ocm:127.0.0.1 10

oci:10 10

ocm:10 50

oci: 1

ocm: 4

icr:10 5

icr:127.0.0.1 100

icm:127.0.0.1 120

Note, however, that the limits apply only to single IP addresses, they are not aggregated for nets. That
is, for the example every single host in the IP net 10.x.y.z can have a maximum incoming connection rate
of 5 messages per minute.

The default values for these configuration options are set in the binary and can be changed via command
line options or the configuration file (see Section 3.8):

1. -C n maximum number of concurrent connections to one IP address [default: 100]

2. -c n initial number of concurrent connections to one IP address [default: 10]

3. -O R=n maximum connection rate per 60s (SMTPS) [default: 100]

4. -O O=n maximum number of open connections (SMTPS) [default: 100]

23

3.9 Configuration for SMAR

3.9.1 Declaring Maps for SMAR

In general, maps must be declared before they can get used. Each map declaration in a configuration file
is a named subsection – the name is used for later references – map in the smar section with the following
options:

1. type: type of the map; currently one of hash (Berkeley DB hash), cdb (tinycdb), sequence, socket,
and passwd.

2. file: the filename of the db file (including the extension) (for type hash, cdb).

3. mapname: name of the map used in the protocol (type socket only).

4. address: IPv4 address of inet socket. (type socket only).

5. path: the pathname of the Unix domain socket (for type socket).

6. port: port for inet socket (type socket only).

7. maps: list of map names to use in the map (type sequence only).

Note: for socket maps either a Unix domain socket (path) or an inet socket (address and port) must
be specified.

Example:

map localusers { type = hash; file = "/etc/meta1/localusr.db"; }

map otherusers { type = cdb; file = "/etc/meta1/otherusr.cdb"; }

map password { type = passwd; }

map seq1 { type = sequence; maps = { localusers, otherusers }; }

map seq2 { type = sequence; maps = { password, otherusers }; }

3.9.2 Configuration Options for SMAR

The following configuration options are valid for SMAR:

1. access_map: this is a subsection that specifies the access control map. See Section 3.9.3 for details.

Note: only one of file (1a) and name (1b) must be specified.

(a) file: filename of access map (including extension) [default: access.db].

(b) name: name of access map . This can be used if a different map type should be used, in which
case the map must be declared as explained in Section 3.9.1.

2. address_delimiter: list of delimiters (specified as string) for address extensions in local part,
[default: "+"]. Note: if address_delimiter has more than one character, the first one that is
found in the local part of an address is used as delimiter in map lookups (see Section 3.12). For
example: if the following option is used in the configuration file:

address_delimiter = "/_-";

24

then for the address “<user/ext-list@dom.ain>”, the delimiter for map lookups is “/” and the
address detail is “ext-list”, while for the address “<user-ext list@dom.ain>”, the delimiter
for map lookups is “-” and the address detail is “ext list”.

3. aliases: this is a subsection that specifies the parameters for aliases.

Note: only one of file (3a) and name (3b) must be specified.

(a) file: filename of aliases map (including extension) [default: aliases.db].

(b) name: name of aliases map . This can be used if a different map type should be used, in which
case the map must be declared as explained in Section 3.9.1.

(c) flags:

i. localpart: the aliases map contains only localparts of addresses and those are only looked
up for local addresses.

ii. local_domains: the aliases map contains fully qualified addresses which are only looked
up for local addresses. This can be used similar to virtual users in sendmail 8, e.g.,
vuser1@virt1.tld: user1

vuser2@virt1.tld: user2

vuser3@virt2.tld: user3

iii. all_domains: the aliases map contains fully qualified addresses which are looked up for
all domains.

iv. implicitly_match_detail: the items are looked up according to the algorithm specified
in Section 3.12.1. and additionally +detail is implicitly matched when the pattern is
“user@hostname”. That is, it overrides the default matching explained in case 1e in
Section 3.12.1.

v. replace_macros: replace macros in the RHS of the map entries by the appropriate value,
see Section 3.12.3.

vi. preserve_domain: if the RHS of an entry is an unqualified address, do not append the
local hostname to it but the domain of the original address, i.e., preserve the original
domain.

4. DNS: this subsection contains DNS related options.

(a) nameservers: list of up to four IPv4 addresses2 of nameservers. Note: it is important that all
of these nameserves work properly. Currently they are used “round robin” without excluding
nameservers that do not answer3.

(b) retries: maximum number of retries. A value of 0 means one query only, i.e., no retry.

(c) timeout: the default timeout for a single DNS query (unit: s). Notes:

• the timeout for a DNS request is the product of the number of tries and the individual
timeout, i.e., (retries + 1) * timeout.

• this value is only the default timeout which can be overridden by an application. For
example, QMGR dynamically increases the timeout for addresses which did not resolve in
earlier tries.

(d) flags: The flag use_resolvconf causes the list of nameservers (see 4a) to be read from
/etc/resolv.conf. This flag is set by default unless the nameservers option is used. Note:
the list of nameservers is not updated when /etc/resolv.conf is changed, smar needs to be
restarted to achieve that.

More flags can be found in Section 8.4.

24 is the default value for the compile time option MTA DNS MAX TSKS
3This needs to be enhanced in a later version, a patch is welcome!

25

5. dnsbl: specify a DNS based blacklist4. This section can be specified multiple times5; it has the
following required options:

• domain: specify the domain to use for DNS lookups, e.g., dnsbl.tld.

• tag: specify the tag to use for lookups in the access map (which must be enabled, see Section
3.10, 3b).

The client IPv4 address A.B.C.D is looked up via DNS as D.C.B.A.domain querying for an A
record. If an A record W.X.Y.Z is found, then it is looked up in the access map as tag:W.X.Y.Z.
for temporary and permanent DNS lookup failures the entries that will be checked in the access
map are tag:temp and tag:perm, respectively.

Notes:

• DNS lookups in blacklists can be disabled via entries in the access map using the tag cltaddr,
see Section 3.9.3.

• Some DNS blacklists return multiple A records. For those the A records are checked (in the
order returned by the DNS server) until an access map entry is found. This is an intermediate
solution as it may cause random results if multiple access map entries for a DNS blacklist
exist. However, as long as all of them have the same return code type (i.e., temporary or
permanent), this behavior is sufficient.

• currently a colon is added as delimiter after tag, this may be removed in later versions to
allow for more flexibility; e.g., the configuration option itself can include a delimiter.

The access map entry should have one of the usual rejection RHSs as explained in 3.9.3. Example:
configuration file:

smar { dnsbl { domain = dnsbl.tld; tag = dnsbltld; } }

access map:

dnsbltld:127.0.0.1 error:550 5.7.1 listed at dnsbl.tld as open relay

dnsbltld:127.0.0.2 error:550 5.7.1 listed at dnsbl.tld as spam source

dnsbltld:127.0.0.9 error:451 4.7.1 listed at dnsbl.tld as suspicious

dnsbltld:temp error:451 4.7.1 temporary lookup failure at dnsbl.tld

If multiple DNS based blacklists are specified, the DNS queries are made concurrently but the
lookups in the access map are performed in the order in which the blacklists are given; the first
successful lookup is used as result, no further priorization is performed.

6. greylisting: specify greylisting options, see Section 3.9.4 for details.

(a) grey_wait: how long before greylisted can be confirmed.

(b) grey_expire: timeout for greylisted entries (did not confirm within that time).

(c) white_expire: expire whitelisted entries after this time if necessary.

(d) white_timeout: force whitelisted entries to reconfirm after this time.

(e) main_DB_name: name of main database (including .db extension).

(f) secondary_DB_name: name of secondary database (including .db extension).

(g) expire_limit: try to expire entries when this limit is reached.

4This option is modelled after dnsblaccess written by Neil Rickert for sendmail 8.
5Compile time option MTA MAX DNSBL: currently set to 8.

26

(h) netmask: by default the entire IPv4 address is used as a key, however, by specifying a netmask,
e.g., 0xFFFFFF00, the least significant bits can be cut off. This can be used to deal with server
farms, see Section 3.9.4, e.g., if those are in the same class C subnet.

7. local_user_map: this is a subsection that specifies a map of valid local addresses.

(a) name: Name of the map of valid local addresses; the map must have been declared as explained
in Section 3.9.1.

(b) flags:

i. implicitly_match_detail: +detail is implicitly matched when the pattern is “user@hostname”.
That is, it overrides the default matching explained in case 1e in Section 3.12.1.

8. log_level: logging level.

9. mailertable: this is a subsection that specifies a mailertable, currently you can specify exactly
one of the following two options:

(a) file: filename of mailertable [default: mt]. In this case a plain text file is read during startup
and placed in an internal hash table.

(b) name: name of a mailertable map that has been declared before (see Section 3.9.1).

(c) flags: these flags can be used to select a subset of the matching described in Section 3.12.1.

i. full_adress: use the full address as key.

ii. detail_plus: lookup also “user++@subdomain”.

iii. detail_star: lookup also “user+*@subdomain”.

iv. star: lookup also “user*@subdomain”.

v. domain: lookup domain part.

vi. dotsubdomain: iterate through subdomains.

vii. dot: lookup also “.”.

The default is domain, dotsubdomain, dot.

The format of entries in the map is explained in Section 3.9.3. Note: reloading mailertable (Section
4.7) while SMAR is running can be done only if it is declared as Berkeley DB (case 9b with the
proper map)

3.9.3 Configuration Maps for SMAR

SMAR requires a mailertable, and it can make use of an alias map as well as an access map, all of which
are described in the subsequent sections.

Access Map

To activate the access map the flag access (see Section 3.10, item 3b) (or the option -a) must be given
to the SMTP servers. All entries consist of a left hand side (LHS, key) which in turn has a tag and a
(partial) address and a right hand side (RHS, value). Valid tags are:

27

Tag refers to
from: envelope sender address (MAIL)
to: envelope recipient address (RCPT)
cltaddr: client IPv4 address
cltname: client host name
cltresolve: result of forward and reverse client lookup
mxbadip: IPv4 addresses that are not allowed for MX - A records
certissuer: DN of CA cert that signed that presented cert
certsubject: DN of presented cert
protectedrcpt: restrictions for recipient address (see Section 3.10.3)
smtps session conf: configuration options for a session in the SMTP server (see Section 3.10.1)
smtps rcpt conf: envelope recipient address (RCPT) (see Section 3.10, 3g)
smtpc rcpt conf: configuration options for recipient in the SMTP client (see Section 3.11.1)
ehlo: EHLO/HELO parameter (see Section 12.1.4)

Valid addresses for from:, to:, and smtps rcpt conf: are RFC 2821 addresses without the angle backets
(localpart@domain) as well as partial addresses in the form localpart and @domain, i.e., domains must
be preceeded with an at (@) sign. Valid addresses for cltaddr: and mxbadip: are IPv4 addresses and
(sub)nets, and for cltname: host names. The client host name is determined by performing a reverse
lookup (PTR record) for its IP address. The resulting names are looked up as A records. Only if one of
the A records matches the client IP address, the host name is set. Note: the host name has a trailing dot
after DNS resolution, this dot must be included in the entry. The result of these lookups can be used for
cltresolve: where the following keys are valid:

ok reverse and forward lookup match
no reverse and forward lookup do not match
tempptr reverse lookup (PTR) caused a temporary error
tempa forward lookup (A) caused a temporary error

Valid values for RHS are

relay allow relaying; currently only for to:, cltaddr:,
cltname:, certissuer:, and certsubject:

ok accept command
error:XYZ A.B.C.D text return an error consisting of SMTP reply code XYZ,

enhanced status code A.B.C.D, and text,
i.e., the part after error: is returned to the client.

reject same as error:550 5.7.0 Rejected.

discard accept command but silently discard its effects.
cont stop current check (e.g., map lookup), but continue others.

Some tags may allow for other RHS values, these are explained when those tags are discussed in more
detail.

Optionally a RHS can be preceeded by the modifier quick:. For an error: entry it causes an immediate
rejection when the entry matches. Otherwise rejections can be delayed to the RCPT stage – if SMTPS is
configured appropriately, see Section 3.10, item 3c – and can be overridden using the modifier quick:

together with ok or relay in the access map for the recipient address with the to: tag. Using the
modifier quick: together with relay for an entry with the cltaddr: tag causes it to override all other
access map checks. quick:ok for an entry with the cltaddr: tag causes it to override other access map
checks unless they are necessary to allow relaying.

Domain names (@domain) must have an exact match, subdomain matching can be specified with a leading
dot, i.e., @.domain, see Section 3.12.1.

28

Examples:

cltresolve:tempptr error:451 4.7.1 reverse lookup failed

mxbadip:127.0.0.1 error:551 5.7.1 Bad IP address 127.0.0.1 in MX/A list

mxbadip:192.168.255.255 error:551 5.7.1 Bad IP address 192.168.255.255 in MX/A list

from:@spammer.domain error:551 5.7.1 No spammers

from:@.spammer.domain error:551 5.7.1 No spammers in subdomains either

to:root error:551 5.7.1 No mail to root

to:abuse quick:ok

cltaddr:10 error:551 5.7.1 No direct mail from 10.x.y.z

cltname:spammer.domain. quick:error:551 5.7.1 No mail from spammers

to:@primary.domain relay

cltaddr:10 relay

cltaddr:127.0.0.1 quick:relay

Discard The effect of discard depends on the protocol stage in which it is returned. If it is returned
for a session, e.g., when a client connects, all transactions in the session are discarded. If it is returned
for MAIL only that transaction is discarded. If it is returned for RCPT only that recipient is discarded;
however, if no valid recipients are left, the entire transaction is discarded. Moreover, if quick:discard
is returned for one recipient the entire transaction is discarded too.

Mailertable

The address resolver implements an asynchronous DNS resolver and by default it uses a file called
mt (mailertable) (see Section 3.9.2, item 9) which consists of domain parts of e-mail addresses and
corresponding IP addresses (in square brackets) or domain/host names. An entry consists (as usual in a
map) of a LHS and a RHS; in the case of a flat text file, i.e., case 9a of Section 3.9.2, those are separated
by one or more whitespace characters.

LHS ::= [local ”@”] [”.”] hostname | ”.”
RHS ::= [[port ”^”] [”esmtp:”]] hosts | ”lmtp:” | port ”^”lmtp:” hosts

| ”{” [”protocol” ”=” ”esmtp” ”;”] [portdef] hostdef ”}”
| ”{” ”protocol” ”=” ”lmtp” ”;” [portdef hostdef] ”}”

port ::= integer
hosts ::= hostname | iplist
iplist ::= ”[” IPv4-address ”]” [” ” iplist]
portdef ::= ”port” ”=” int ”;”
hostdef ::= ”host” ”=” hostname | ”ipv4” ”=” ”{” ipv4-list ”}”
ipv4 ::= IPv4-address

The key (LHS) is an address (without angle brackets), a hostname, or a dot (denoting the default entry).
The value (RHS) is

• either a specification following the same syntax as the configuration file (in this case the specification
must be enclosed by curly braces),

• or it uses a syntax specific to mailertable consisting of an optional port number, an optional (esmtp)
protocol and a hostname or a list of IPv4 addreses (in square brackets) which are separated by
spaces.

If LMTP should be used, then the lmtp protocol must be selected. There are two cases: just {

29

protocol=lmtp; } (or lmtp:) by itself means the delivery agent will use the Unix domain socket speci-
fied in the configuration file (see Section 3.11, item 2), if an inet socket should be used then a port and
a host must be specified. A hostname is subject to MX lookups.

Example:

localhost lmtp:

SPAM.FILTER.DOMAIN { port=2525; protocol=esmtp; ipv4={127.0.0.1} }
LMTPHOST.MY.DOMAIN { protocol=lmtp; port = 525; ipv4= { 10.11.12.13 } }
MY.DOMAIN esmtp:[10.1.2.3]

ANOTHER.DOMAIN esmtp:MTA.SERVER

.TLD { host = GATE.WAY }

. esmtp:SMART.HOST

Note: currently this file must exist, even if there are no entries (it is created during installation).

Aliases

To specify aliases for local addresses the map aliases.db (Section 3.9.2, item 3a) is used. The key in
the map must be

• the local part of a valid (local) e-mail address,

• or a complete local e-mail address,

• or any e-mail address,

based on the flags of the aliases option (see Section 3.9.2, 3c). The value (RHS) for an alias entry is a
list of one or more RFC 2821 addresses (including the angle brackets) separated by spaces (not commas).
If the RHS has only a single address which does not start with an angle bracket, then it is converted into
an RFC 2821 address by SMAR, i.e., SMAR will append the hostname of the machine and put angle
brackets around the string. Example:

myalias: localuser

mylist: <user1@my.dom> <user2@my.dom> <localuser@local.host>

owner-mylist: someuser

For mailing lists, the owner- notation is supported, i.e., if there are aliases list and owner-list then mail
sent to list will use owner-list as envelope sender address; the original domain will be preserved.

Example for the flag local_domains (see 3.9.2, 3(c)ii). Let two domains be local, i.e., in mailertable:

first.dom lmtp:

second.dom lmtp:

and these entries be in aliases:

myalias@first.dom: user1

another@second.dom: user2

Then mail to <myalias@second.dom>and <another@first.dom>would be rejected while mail to <myalias@first.dom>
or <another@second.dom> would be accepted.

Aliases can be nested (currently up to 5 levels, see smar/rcpts.c).

30

3.9.4 Greylisting

MeTA1 supports two forms of greylisting [Hara]

1. simple greylisting: only uses the client IP address as key. [Posa].

2. full greylisting: uses a tuple consisting of client IP address, envelope sender, and envelope recipient
as key.

The idea behind greylisting is simple: do not accept mail from an unknown source on the first connection,
but reject it with a temporary error. Any MTA that conforms to RFC 2821 [Kle01] will try to send
the mail later on, however, spamming systems often do not do that. An IP address can be in three
different states: unknown: the client has not connected before or the entry is expired from the database,
greylisted: the client has connected before but it did not yet connect again within the configured time
interval, whitelisted: the client has connected before and it connected again within the configured time
interval. The time interval is specified by its lower limit grey_wait and its upper limit grey_expire.
A lower limit is used to prevent system from getting accepted that just send a single message within a
few seconds again and again. The upper limit is used to avoid filling up the database. If an entry has
made it to the whitelisted state, it will stay there (at least) up to the timeout specified by white_expire.
The greylisting algorithm implemented in MeTA1 uses another timeout white_timeout after which a
whitelisted entry is considered stale and must go through the greylisting stages again, i.e., it is considered
to be in state unknown. Each time a mail is sent from a whitelisted host, the entry is updated, to avoid
that systems which regularly sent mail become greylisted again.

Greylisting is performed at the RCPT stage of the SMTP dialogue. It is only done when a valid recipient
is specified, i.e., all other checks must have been successful. Hence clients that do not try to send mail
or just try invalid recipient addresses will not be added to the greylisting database. If a transaction is
subject to greylisting then the session is aborted with an 421 error. If a server uses callbacks to verify
the sender address, then the option delay_greylisting_error_until_DATA (see Section 3.10, item 3d)
is useful to avoid unnecessary delays. Here is an example: host A is the main MX server for domain
example.com and it uses greylisting, host B is the main MX server for domain example.net and it
uses sender callbacks. If a mail is sent to host B for <rcpt@example.net> with the sender address
<user@example.com> then host B will connect to host A to test whether <user@example.com> is a valid
recipient. However, if host A does not have host B in its whitelist, it will return a 421 error after the RCPT
To:<user@example.com> command, which (depending on the implementation of the sender callback)
will cause host B to temporarily reject the mail for <rcpt@example.net>. By specifying the option
delay_greylisting_error_until_DATA on host A the RCPT command will succeed and the original
mail to <rcpt@example.net> will go through without delay.

The greylisting implementation uses two persistent databases (specified by main_DB_name and secondary_DB_name),
where the second DB is just a secondary index (by expiration time) for the main DB. These databases
should be on a filesystem with sufficient free disk space depending on how many connections from different
clients the MTA receives. Entries are only removed from the DB if there are more than expire_limit

elements. However, if none of the entries are expired yet, then the number of elements can exceed that
limit.

Greylisting: Whitelisting

Greylisting can be disabled for selected hosts by adding them to the access map (see Section 3.9.3), e.g.,

cltaddr:10 relay

cltaddr:127.0.0.1 quick:relay

31

Possible Problems with Greylisting

Some legitimate mailers do not behave properly and will not retry a mail that had a temporary error.
This can cause mail loss in various situations, e.g., because the receiving system is currently out of some
resources. However, to minimize the impact of greylisting on these misbehaving mailers it might be useful
to explicitly whitelist them as:

cltaddr:12.107.209.244 ok

cltaddr:64.12.137 ok

A list of such broken mailers can be found at http://cvs.puremagic.com/viewcvs/greylisting/schema/whitelist ip.txt

[Harb]. A related problem are server farms where a mail might be resent from a different IP address.
These should probably be whitelisted too; some of these can be found at the URL given before. However,
entries in that file which have the comment “unique sender per attempt” do not need to be whitelisted
as this implementation does not use the sender address.

Note: if a client authenticates via STARTTLS or AUTH such that relaying is allowed then greylisting is
disabled for that client.

3.10 Configuration for SMTP Server

The following configuration options are valid for SMTPS:

1. auth: this is a subsection that specifies the parameters for AUTH support. It is only available if the
system has been configured with the option --enable-SASL, see Section 2.2.1.

(a) flags: flags for SMTP AUTH

See the Cyrus SASL documentation for the meaning of these flags: noplaintext, noactive,
nodictionary, forward secrecy, noanonymous, pass credentials, mutual auth.

(b) trusted_mechanisms: list of SASL mechanisms for which relaying is allowed if a client suc-
cessfully authenticated using one of those

Note: the name for the Cyrus-SASL configuration file is currently meta1.conf. That file can be
used to adjust the list of mechanisms (option mech list) that should be advertised (besides many
other things), hence this option is not in the SMTP server itself.

2. CDB_gid: (numeric) group id for CDB files, i.e., the group id of meta1c, see Section 2.4.1.

3. flags:

(a) 8bitmime: offer 8BITMIME: MeTA1 is 8 bit transparent, but it does not perform any conversion,
so this option should only be used if all communication partners can deal with 8 bit data.

(b) access: use access map (in SMAR). Note: currently this flag is required to perform a reverse
lookup for a client IP address to get the hostname of the client which then can be used for
logging and the Received: header.

(c) delay_checks: delay acceptance check until RCPT stage (unless explicitly overridden, see Sec-
tion 3.9.3).

(d) delay_greylisting_error_until_DATA: if greylisting (3e) is enabled then wait until the DATA
command to return an error; see Section 3.9.4 for details.

(e) greylisting: enable simple greylisting (which must also be enabled in SMAR, see Section
3.9.2 item 6), see Section 3.9.4 for details.

32

(f) fullgreylisting: enable full greylisting (which must also be enabled in SMAR, see Section
3.9.2 item 6), see Section 3.9.4 for details.

(g) rcpt_conf: request SMAR lookup of RCPT address in the access map using the tag smtps rcpt conf.

Currently the RHS for this kind of entry is a flags option and the only possible value is
greylisting, which allows to turn on greylisting per RCPT, e.g.,

smtps rcpt conf:some@local.domain flags = greylisting;

Note: this will change in a subsequent version (syntax and features) as soon as some basic
concept has been determined.

(h) lmtp_does_not_imply_relaying: even if a domain in the mailertable has lmtp: as RHS
do not implicitly allow relaying to it, i.e., do not consider the domain as “local” with re-
spect to relaying. This is useful for an MSA to avoid external mail to local domains without
authentication.

(i) soft_bounce: change permanent (5xy) SMTP error replies into temporary (4xy) errors. This
is a useful feature for testing to avoid bounces due to misconfigurations.

(j) require_EHLO_before_MAIL: require EHLO (or HELO) before a MAIL command.

(k) strict_EHLO_checks: perform a strict syntax check on the argument for EHLO (or HELO).

(l) xverp: offer XVERP extension to turn on VERP [Ber97] support for a transaction. This is a
parameter for the MAIL command, e.g.

MAIL From:<sender@some.domain> XVERP

(m) allow_data_before_greeting: allow a client to send data before the initial 220 greeting.

(n) prdr: PRDR is an SMTP extension [Hal07] to return individual RCPT status after the end of
data (similar to LMTP). This feature is turned on if a policy milter is configured (see item
17).

(o) lookup_session_conf: Look up session configuration data (see Section 3.10.1) in the access
map (which must be activated, see 3b).

4. id: unique identifier for SMTP server (0); see Section 3.10.2.

5. io_timeout: timeout for SMTP operations.

6. max_threads: maximum number of threads.

7. max_bad_commands_per_session: maximum number of bad, i.e., unknown, SMTP commands per
session accepted by server. After this limit is reached the connection is terminated with an 421
error.

8. max_invalid_addresses_per_session maximum number of invalid, e.g., unknown, RCPT ad-
dresses per session accepted by server. After this limit is reached the connection is terminated with
an 421 error.

9. max_nop_commands_between_transactions: maximum number of NOOP, RSET, and related
SMTP commands between two successful transactions accepted by server. After this limit is reached
the connection is terminated with an 421 error.

10. max_bad_commands_per_transaction: maximum number of bad, i.e., unknown, SMTP commands
per transaction accepted by server. After this limit is reached the connection is terminated with an
421 error.

11. max_nop_commands_in_transaction: maximum number of NOOP and related SMTP commands
in a single transaction accepted by server. After this limit is reached the connection is terminated
with an 421 error.

33

12. max_invalid_addresses_per_transaction maximum number of invalid, e.g., unknown, RCPT
addresses per transaction accepted by server. After this limit is reached the connection is terminated
with an 421 error.

13. max_recipients_per_session: maximum number of recipients per session.

14. max_recipients_per_transaction: maximum number of recipients per transaction.

15. max_hops: maximum number of hops (Received: headers). If this value is exceeded the incoming
mail is rejected because it is considered a possible mail loop.

16. max_message_size: maximum message size (unit: KB).

17. policy_milter: this is a subsection that specifies the parameters for pmilter support (see Section
5). It is only available if it has been enabled during configure (--enable-pmilter, see Section
2.2.1).

(a) socket: this is a subsection that specifies the socket to communicate with policy milter. The
type (option type) of the socket must be either inet or unix.

i. type = inet

A. port: port number for connection.

B. address: IP address for connection.

ii. type = unix

A. path: pathname of Unix Domain socket.

(b) timeout: maximum amount of time to wait for a reply from a policy milter.

(c) flags: policy milter flags. If the connection to pmilter fails then SMTPS will ignore pmilter
by default. This behavior can be changed by setting one of following two flags:

i. abort: if the connection to pmilter fails then abort the current session with a 421 error.

ii. accept_but_reconnect: if the connection to pmilter fails then continue the current session
but try to reconnect for the next session.

18. processes: number of processes to start.

19. protected_recipients: this is a subsection which provides a few simple options to protect recipi-
ents by restricting who can send mail to them.

(a) allow_by: this is a required subsection which has two possible flags (at least one must be
specified).

i. sender: allow sending mail based on the envelope sender (MAIL) address. Even though
this address can be forged it provides some basic protection.

ii. client_ip: allow sending mail based on the client IP address.

(b) match_type: this specifies what type of matching should be done. By default, exact matches
are required. Alternatively, one of the following two options can be selected:

i. generic_lookup: the items are looked up according to the algorithm specified in Section
3.12.1.

ii. implicitly_match_detail: the items are looked up according to the algorithm specified
in Section 3.12.1. and additionally +detail is implicitly matched when the pattern is
“user@hostname”. That is, it overrides the default matching explained in case 1e in
Section 3.12.1.

See Section 3.10.3 for details.

34

20. max_transactions: maximum number of transactions per session.

21. tls: this is a subsection that specifies the parameters for STARTTLS support. It is only available if
the system been configured with the option --enable-TLS, see Section 2.2.1. See Section 11.1 for
some background information about these options.

(a) cache_size: size of TLS session session cache (0: disable cache).

(b) cache_timeout: timeout for entries in TLS session session cache.

(c) cert_file: file with certificate in PEM format.

(d) key_file: file with private key for certificate in PEM format.

(e) CAcert_file: file with CA certificate in PEM format.

(f) CAcert_directory: directory with (symbolic links for) CA certificates in PEM format.

(g) flags: some flags are available to influence the behavior of the SMTP server with respect to
STARTTLS.

i. allow_relaying_if_verified: if the client presented a certificate that can be verified
by the CA certificates that are available to the server (see above: CAcert_file and
CAcert_directory), then relaying is allowed for the SMTP session.

ii. check_access_map_for_relaying: if this flag is set then the access map (which must be
activated, see 3b) is checked to see whether relaying should be allowed for a client which
presented a certificate that has been verified (see above). For this purpose, the DN of the
cert issuer is looked up in the access map using the tag certissuer:. If the resulting
value is relay, relaying is allowed. If it is cont, the DN of the cert subject is looked up
next in the access map using the tag certsubject:. If the value is relay, relaying is
allowed; every other value is currently ignored.
To avoid problems with the DN names in map lookups, they are modified as follows: each
non-printable character and the characters ’<’, ’>’, ’(’, ’)’, ’"’, ’+’, ’ ’ are replaced by their
hexadecimal ASCII value with a leading ’+’. For example:
/C=US/ST=California/O=endmail.org/OU=private/CN=

Darth Mail (Cert)/emailAddress=darth+cert@endmail.org

is encoded as:
/C=US/ST=California/O=endmail.org/OU=private/CN=

Darth+20Mail+20+28Cert+29/emailAddress=darth+2Bcert@endmail.org

Examples:
To allow relaying for everyone who can present a cert signed by
/C=US/ST=California/O=endmail.org/OU=private/CN=

Darth+20Mail+20+28Cert+29/emailAddress=darth+2Bcert@endmail.org

simply use:
certissuer:/C=US/ST=California/O=endmail.org/OU=private/CN=

Darth+20Mail+20+28Cert+29/emailAddress=darth+2Bcert@endmail.org relay

To allow relaying only for a subset of machines that have a cert signed by
/C=US/ST=California/O=endmail.org/OU=private/CN=

Darth+20Mail+20+28Cert+29/emailAddress=darth+2Bcert@endmail.org

use:
certissuer:/C=US/ST=California/O=endmail.org/OU=private/CN=

Darth+20Mail+20+28Cert+29/emailAddress=darth+2Bcert@endmail.org cont

CertSubject:/C=US/ST=California/O=endmail.org/OU=private/CN=

DeathStar/emailAddress=deathstar@endmail.org relay
Notes:

• line breaks have been inserted after CN= for readability, each tagged entry must be one
(long) line in the access map.

35

• if OpenSSL 0.9.6 is used then the emailAddress= part of a DN is replaced by Email=.

(h) requirements_violation: This option decides how to (globally) handle TLS requirement
violations (see Section 3.10.1). Possible values are: permfail: generate permanent failure,
tempfail: generate temporary failure, abort: abort session. These option take effect when a
MAIL command is issued by the client.

22. session_features: This section can be used to define classes of features for an SMTP server session
which then can be referenced via the access map. Available flags are a subset of those listed in item
3: starttls, auth, delay_checks, allow_data_before_greeting, require_EHLO_before_MAIL,
strict_EHLO_checks, check_EHLO.

Example: to turn off STARTTLS for some clients, declare a notls class in the configuration file:

session_features notls { flags = { -starttls }}

and reference it in the access map for those clients:

smtps_session_conf:217.126.135.148 session_feature=notls;

3.10.1 SMTP Server Session Configuration

Some options can be set via the access map (see Section 3.9.3, tag smtps session conf) because they
apply to a session, not globally. Currently available are: STARTTLS requirements (tls_requirements)
(see Section 3.13) and session_features (see Section 3.10, item 22).

3.10.2 Multiple SMTP Servers with different Configurations

The normal way to run multiple SMTP servers is to let MCP start several SMTP servers. Each
SMTP server must given a unique identifier (see Section 3.10, item 4) and each SMTP server section in
meta1.conf must have a unique name (e.g., MTA and MSA), which is passed via the option -N name

to smtps. Example: meta1.conf:

smtps MTA {

id = 0;

listen_socket { type=inet; port = 25; }

start_action = pass; pass_fd_socket = smtps/mtafd;

user = meta1s;

path = /usr/libexec/smtps;

arguments = "smtps -N MTA -f /etc/meta1/meta1.conf";

log { facility = mail; ident=meta1-MTA; }

}

smtps MSA {

id = 1;

listen_socket { type=inet; port = 587; }

start_action = pass; pass_fd_socket = smtps/msafd;

user = meta1s;

path = /usr/libexec/smtps;

arguments = "smtps -N MSA -f /etc/meta1/meta1.conf";

36

log { facility = mail; ident=meta1-MSA; }

auth { trusted_mechanisms = "CRAM-MD5 DIGEST-MD5";

flags = { noplaintext }; } }

For tests it is also possible to let MCP start only one SMTP server which creates several copies of itself if
multiple daemon addresses are specified (see Section 3.10, item 1). Note: this only works for unprivileged
ports because the SMTP server does not run as root.

3.10.3 Protecting Recipients

A few simple features are available to protect recipients by restricting who can send mail to them. To
do this the configuration section protected_recipients must be turned on and at least one of the two
flags sender and client_ip must be selected (see Section 3.10, item 19a). If this is done, then every
recipient is looked up in the access map (which must be activated, see Section 3.10, item 3b), using the
tag protectedrcpt:. If a matching entry is found, it must have a list of (one or more) restrictions, each
of which must be one of the following:

restriction required allow_by flag
from:sender sender

cltaddr:IPv4-address client_ip

list:alias sender

The meaning of the first two restriction types should be obvious, the third one is interesting: it refers to
an alias (in the aliases map, see Section 3.9.3) and requires that the sender address matches one of the
entries to which the alias expands. This can be used to allow only subscribed members of a mailing list
to send mail to it.

The restrictions are evaluated sequentially, if there is a match, the recipient is accepted (sequential OR).
If none of them matches, the recipient is rejected.

By default exact matches are required. However, if the flag generic_lookup is set (see Section 3.10, item
19b), the items are looked up as specified in Section 3.12.1. The flag implicitly_match_detail is useful
for the list: restriction if a sender uses +detail without having that specified during subscription.

Examples: consider the following aliases map:

list1: <user1-1@l1-1.dom> <user2-1@l1-1.dom> <list2@local.dom>

list2: <user1-2@l2-1.dom> <user2-2@l2-2.dom>

list3: <user1-3@l3-1.dom> <user2-3@l3-2.dom>

together with this access map:

protectedrcpt:list1@local.dom list:<list1@local.dom>

protectedrcpt:list3 from:<moderator3@local.dom> cltaddr:1.2.3.4 cltaddr:10

The mails to <list1@local.dom>are only accepted from <user1-1@l1-1.dom>and <user2-1@l1-1.dom>.
Note: the list is not recursively expanded, i.e., members of list2 are not allowed, that restriction must be
listed in the access map. Mails to <list3@local.dom> are only accepted from <moderator3@local.dom>,
the client with the IPv4 address 1.2.3.4, or clients in the IPv4 net 10. The latter requires that the flag
generic_lookup is turned on too.

37

3.11 Configuration for SMTP Client

The following configuration options are valid for SMTPC:

1. io_timeout: timeout for SMTP operations (unit: s).

2. LMTP_socket: Unix domain socket to use for LMTP [default: lmtpsock].

3. log_level: logging level.

4. tls: this is a subsection that specifies the parameters for STARTTLS support. It is only available if
the system been configured with the option --enable-TLS, see Section 2.2.1. See Section 11.1 for
some background information about these options.

(a) cert_file: file with certificate in PEM format.

(b) key_file: file with private key for certificate in PEM format.

(c) CAcert_file: file with CA certificate in PEM format.

(d) CAcert_directory: directory with (symbolic links for) CA certificates in PEM format.

5. wait_for_server: maximum amount of time to wait for a server (QMGR) to become available
(unit: s).

3.11.1 SMTP Client Session/Recipient Configuration

The following options can only be set via the access map (see Section 3.9.3, tag smtpc rcpt conf) or the
configuration map for QMGR (see 3.8.1, tag smtpc session conf) not in the SMTP client configuration
section itself, as they apply to a session or recipient, not globally. Currently only STARTTLS requirements
are available which are documented in Section 3.13, more option might be added later on. Note: as more
options might be added, the structure of this may change a bit.

3.12 Lookup Orders

3.12.1 Lookup Orders in Maps

In many cases an item is not just looked up verbatim in a map, but it may be split into logical parts
and then less significant parts are iteratively removed and the remaining data is looked up until either
a match is found or the data is empty; in the latter case a default key may be looked up depending on
the map. These steps can be controlled by flags that are specified in the configuration file for the map.
These flags are listed below for the various lookup steps.

For domain names of the form “sub2.sub1.tld” the lookup order is “sub2.sub1.tld”, “.sub1.tld”,
“.tld”, and “.” (without the quotes). The subdomains are tried if the flag dotsubdomain is set. The
last lookup (“.”) is only done if the flag dot is set, as it is the default for mailertable. Obviously this
schema is extended if more components are specified. As the sequence shows there is no implicit “match
all subdomains” lookup, instead entries in a map must have a leading dot for subdomains matches. To
reiterate: “sub2.sub1.tld” does neither match the entry “sub1.tld” nor “tld”.

For IPv4 addresses of the form “A.B.C.D”, the lookup order is “A.B.C.D”, “A.B.C”, “A.B”, and “A”
(without the quotes). In contrast to domain lookups, no trailing dots are required (nor checked) to

38

denote subnet matches, because the number of components of an IPv4 address is fixed (and known) in
contrast to the number of components in a host name or domain name.

For RFC 2821 addresses of the form “<user+detail@domain>”, where “+detail” is optional and “+” is
the first delimiter in the localpart that was found in the address_delimiter string (see Section 3.9.2),
the lookups are done according to the following sequence:

1. Repeat the following lookups for each subdomain of domain (as explained above):

(a) “user+detail@subdomain” if “+detail” exists; this is a verbatim match. Flag: full_adress.

(b) “user++@subdomain” if “+detail” exists and “detail” is not empty; this matches any non-
empty “+detail”. Note: the second “+” character is a fixed metacharacter, it does not depend
on address_delimiter; it is a modelled after the “+” operator in regular expressions etc to
denote a non-empty sequence of items. Flag: detail_plus

(c) “user+*@subdomain” if “+detail” exists; this matches any “+detail” (including just “+”).
Flag: detail_star

(d) “user*@subdomain”; this matches “user@subdomain” as well as “user+detail@subdomain”
(“detail” can be empty). Note: “*” is not a generic metacharacter here, it matches only a
token beginning with address_delimiter or an empty sequence, it does not match any other
character sequence. For example: the input “user1@subdomain” does not match the LHS
“user*@subdomain”. Flag: star

(e) “user@subdomain”; this does not match if “+detail” exists, unless the flag implicitly_match_detail
is selected for the map to implicitly match a detail even if there is no wildcard in the pattern.

(f) “@subdomain”.

2. If nothing has been found and the map type requests it, then try localpart only (with the same
meaning as above):

(a) “user+detail” if detail exists

(b) “user++” if detail exists and is not empty,

(c) “user+*” if detail exists,

(d) “user*”,

(e) “user”

3.12.2 Lookup Orders for Anti-Spam Measures

Map lookups for anti-spam measures are performed according to the SMTP dialogue, i.e., connection
information (cltaddr: and cltname:), MAIL command (from:), and RCPT command (to:). Whether a
rejection has an immediate effect depends on the result of the lookup, e.g., the quick: modifier, and
whether the option delay_checks is set. If multiple checks are performed during a single stage of the
SMTP dialogue then they are done sequentially until one of them returns something else than cont.

Note: in the description of the algorithms below some items are marked as check:. Only those can change
the result value, other steps perform just operations that may be needed later on but have no immediate
effect on the outcome of the checks.

39

Connect

During connect the following operations are performed if the access flag (see Section 3.10, item 3b) is
enabled:

1. check: look up client IP address using tag cltaddr: (as explained in 3.12.1)

2. start DNS blacklist queries,

3. map client IP address to client hostname returning the tuple (clientresolve, clientname).

4. check: look up cltresolve:clientresolve

5. check: look up cltname:clientname (as explained in 3.12.1)

6. check: look up results of DNS blacklists in access map.

MAIL

After a MAIL command has been received the following checks are performed unless the address is <> or
a session check resulted in quick:relay or quick:ok:

1. check: is the address routeable? That is, if the sender address would be used as a recipient address
(as it would be necessary if a DSN must be sent) is it possible to find a host that will deal with the
address? This means that the domain part must have a valid MX or A record or that routing is
specified via mailertable.

2. check: if the domain of sender address is local: is the local part valid?

3. check: look up the address in the access map (provided it is enabled) with the tag from:.

4. check: look up the IP addresses that were found when trying to determine whether the address is
routeable with the tag mxbadip: in the access map.

RCPT

A RCPT command causes different checks (note: these are sequential checks, not exclusive, i.e., if the first
one applies and it does not return a decision, the second one is performed):

1. is this a relaying attempt and if so, is it authorized? Relaying can be allowed for the entire session,
e.g., due to the client IP address or other authorization based on some authentication (STARTTLS,
AUTH).

2. are there any other restrictions for the recipient address?

For case 1 the following tests are performed:

1. check: is the recipient local and does the address exist? If yes, it is not a relaying attempt and
hence allowed.

40

2. check: look up the recipient address with the tag to: (provided the access map is enabled) (provided
the access map is enabled) and check whether the RHS is relay, otherwise reject the RCPT command
as unauthorized relaying attempt unless the RHS is an error entry which is then used as reply.

For case 2 the following steps are taken:

1. look up address with tag protectedrcpt:, if found perform all the necessary checks as explained
in Section 3.10.3.

2. check: look up the address using the tag to: if all of the following three conditions are met:

(a) the access map is enabled.

(b) a session check did not result in quick:relay.

(c) a session check did not result in quick:ok and relaying is allowed by other means.

3. check: perform greylisting unless the session is marked as ok or relay or the RCPT lookup returned
quick:ok or quick:relay.

3.12.3 Macro Replacements in RHS

The alias map allows the use of macro in the right hand side of map entries. Macros have the form
“${name}” (without the quotes). Available macros are: user, detail, domain, tag, delimiter, subdomain,
extension. They have the obvious meaning; subdomain refers to the part of the domain before the dot,
i.e., if the pattern is @.domain and the input is user@host.domain then subdomain refers to host,
extension is the delimiter and the detail together (provided the address contains them).

Example:

alias*@.domain user${extension}@${subdomain}.domain

provides the following mappings:

alias@host.domain user@host.domain

alias+detail@host2.domain user+detail@host2.domain

3.13 STARTTLS Restrictions

STARTTLS requirements can be set for the SMTP server and SMTP client via map entries (see Sections
3.10.1 and 3.11.1). These restrictions are listed in a section called tls_requirements.

1. common_name: require that the CN (Common Name) of the presented TLS certificate matches the
specified value.

2. cert_subject require that the CS (CERT subject) of the presented TLS certificate matches the
specified value.

3. cert_issuer require that the DN (Distinguised Name) of the issuer of the presented TLS certificate
matches the specified value.

41

4. min_cipher_bits require that the effective keylength (in bits) of the symmetric encryption algo-
rithm used for a TLS connection is at least as big as the specified value.

5. flags: available flags are currently:

(a) verified: the TLS connection must be verified, i.e., the cert issuer must be listed in CAcert_file

or CAcert_directory (see Section 3.10, item 21).

(b) encrypted the TLS connection must be encrypted (i.e., the effective keylength (in bits) of the
symmetric encryption algorithm used for a TLS connection is greater than zero.

6. requirements_violation See Section 3.10, item 21h, for possible values.

Example (note: the entry must be currently written in a single line to be properly processed by createmap(8)):

smtpc_rcpt_conf:@meta.org tls_requirements { cert_issuer="/C=US/ST=Berkeley/L=Endmail+20Org/O=MTA/CN=Claus

3.14 VERP

There are two ways to enable VERP [Ber97]:

1. Via the XVERP extension in the SMTP server (see Section 3.10, item 3l).

2. Via an entry in aliases marking a list with verp-:

otherlist: <user5@my.dom> <user6@other.dom> <user7@local.host>

verp-otherlist: something

42

Chapter 4

Running MeTA1

4.1 Starting MeTA1

All components of MeTA1 are under control of the MCP which must be started as root in the directory
/var/spool/meta1 (i.e., the main queue directory, see Section 2.4: MTAQDIR) using

./mcp.sh start

The script contains the runtime path for MCP based on the data used by configure as well as a reference
to the MeTA1 configuration file.

To stop all MeTA1 components use

./mcp.sh stop

or simply terminate the MCP, it will forward the signal to all processes it started.

The MCP provides some restart functionality: if a process terminates (e.g., crashes), it will restart it
unless the exit code indicates that a restart is useless, e.g., EX USAGE. Moreover, the processes listed in
the restart dependencies will be stopped and started too.

4.2 Using MeTA1 only for Outgoing Mail

MeTA1 can be used in combination with a MUA that speaks (E)SMTP directly or with the sendmail 8
MSP (Mail Submission Program) for outgoing mail. For the latter add this to your sendmail 8 submit.mc

file (see also misc/sm8.submit.mc):

LOCAL_RULE_0

R$* + X<@$*> $#meta1 $@ localhost $: $1 <@$2>

LOCAL_RULESETS

SHdrToSMTP

R$+ $: $>PseudoToReal $1 sender/recipient common

43

R$+ $: $>MasqSMTP $1 qualify unqual’ed names

R$* + X<@$*> $: $1 < @ $2 >

R$* < @ *LOCAL* > $* $: $1 < @ $j . > $2

MAILER_DEFINITIONS

Mmeta1, P=[IPC], F=kmDFMuXa, S=EnvFromSMTP/HdrFromSMTP, R=EnvToSMTP/HdrToSMTP,

E=\r\n, L=990, T=DNS/RFC822/SMTP,

A=TCP $h 2009

and run the SMTP server of MeTA1 as listener on localhost:2009. Then mail to <user+X@domain>

will be sent via MeTA1, i.e., by adding the sequence +X to the address <user@domain> the mail will be
redirected to MeTA1 (and +X will be removed). After initial testing the relay mailer can be changed to
use port 2009 by default hence the local additions shown above can be removed.

There are also other programs available as substitute for the command line invocation of sendmail as
mail submission program, e.g., mini sendmail [Posb].

4.3 Using MeTA1 for Incoming Mail

4.3.1 Local Delivery and Specifying Local Domains

If the domain of a recipient address matches an entry in mailertable (see Section 3.9.3) with the right
hand side lmtp:1 then SMTPC talks LMTP over the local socket lmtpsock (see 3.11). If you have
an LDA that runs as daemon and can talk LMTP over a local socket you can use it for local delivery.
It is also possible to use procmail [vdBG] in LMTP mode and start it from mcp, see meta1.conf. See
contrib/procmail.lmtp.p0 for a patch2 for procmail 3.22 to allow handling of addresses with extensions
(+detail) in LMTP mode. A mailertable for local delivery via LMTP should look like this:

localhost lmtp:

MY.DOM lmtp:

HOST.MY.DOM lmtp:

By default mail to addresses whose domain part is listed in mailertable with RHS lmtp: is allowed, i.e.,
those domains are considered local and hence relaying (even though technically this might not be called
relaying) to them is allowed. This behavior can be turned off (see Section 3.10, item 3h) in which case
it is necessary to also allow relaying to these domains which can be done either via the access map (see
Section 3.10, 3b), or the command line option -T for SMTPS. This allows for treating (some of) these
domains as private by not allowing relaying to them, hence they will be only reachable from systems from
which relaying is allowed.

4.3.2 Specifying Valid Local Addresses

To validate addresses for local domains, SMAR uses the map aliases.db (Section 3.9.2, item 3a), which
can be created using createmap, or a map specified by the option local_user_map (see Section 3.9.2,
item 7). The key in the map must be the local part of a valid (local) e-mail address. If the local part
cannot be found in either map, the address is rejected.

1currently internally encoded as 127.0.0.255
2if the patch fails to apply, make sure you use a working patch(1) program, e.g., most SunOS 5.x versions ship with a

broken program

44

To list valid local addresses in the alias map the right hand side must be the string “local:”, e.g.,

postmaster: <user@host.domain>

abuse: user+abuse

user++: local:

user: local:

Note: local addresses are checked for the envelope recipient and sender.

4.4 Using MeTA1 as Gateway

MeTA1 can easily be used as an internet gateway. To override routing, mailertable entries (see Section
3.9.3) can be specified. A list of valid addresses can be made available via the access map by allowing
relaying to those addresses instead of entire domains, e.g.,

to:user1@my.domain relay

to:user2@my.domain relay

to:postmaster@my.domain relay

cltaddr:10.12 relay

4.5 Using MeTA1 as Backup MX Server

The previous section showed how to specify valid remote addresses if all of them are known. However,
for systems that act as backup MX servers it might not be simple to always keep such a list up to date.
In that case, a default entry for a domain should be made, e.g.,

to:user1@other.domain relay

to:user2@other.domain relay

to:postmaster@other.domain relay

to:@other.domain error:451 4.3.3 Try main MX server

cltaddr:10.12 quick:relay

cltaddr:127.0.0.1 quick:relay

The last two entries allow local systems to send mail to any user at other.domain; without those entries
mail to unlisted users will be (temporarily) rejected and hence cannot be delivered via this system.

4.5.1 Note about Backup MX Servers

It is not a good idea to run a backup MX server B for a host A that has stronger anti-spam measures;
if mails are sent to A via B, then B may accept them for delivery, but A may reject them and hence B

has to sent bounces, which, in case of spam, are most likely to forged addresses, hence those bounces
will only cause additional problems. The opposite case (B has stronger anti-spam measures than A) can
cause the rejection of mail that A actually wanted to receive. Hence B and A should have the same anti-
spam measures; i.e., a system that acts as backup MX server for another one should perform the same
anti-spam checks as the main MX server(s).

45

4.6 Miscellaneous Programs

4.6.1 Do not run programs as root User

Almost all MeTA1 programs (except for MCP) refuse to run with root privileges. To run a program as
a different user the utility misc/runas can be used, e.g., after installation in /usr/local/bin/

/usr/local/bin/runas meta1q mailq -V

(specify -h to see the usage).

4.6.2 Displaying Content of Mail Queues

The program mailq displays the content of the mail queues (defedb and ibdb). Currently its output is in
a similar format as the sendmail 8 version. The option -h shows how to use the program; see the previous
section about using runas for mailq. A simple shell script wrapper mailq.sh is available that invokes
mailq via runas. Note: the output of this program might not be accurate due to internal buffering
by QMGR. Moreover, this program reads DEFEDB in such a way that only entries that have been
checkpointed (see Section 8.2 about options for checkpoints) are shown. This is done to avoid interference
with the operation of QMGR.

4.6.3 Interacting with QMGR

The program qmgrctl allows to interact with the QMGR via the control socket (see Section 3.8, item
3). Invoke qmgrctl -h to see the available options. By default the program will show the current status
of QMGR. If QMGR has been compiled with the option QMGR STATS (see Section 12.1) then additional
statistics is available, e.g., the number of transactions and recipients that has been handled.

Enhancement to this program are welcome to provide more functionality.

4.7 Reloading Maps

Maps (for SMAR and QMGR) can be reloaded by moving the old db file out of the way, creating a new
file and then sending a USR1 signal to the appropriate process to reopen the map.

mv $MAP.db $MAP.old.db

/usr/local/bin/runas meta1q createmap -F $MAP.db < $MAP

kill -USR1 $PID

Note: for QMGR it is also possible to use qmgrctl -r instead, see Section 4.6.3.

4.8 Logging

Logging is done via syslog(3) (see Section 3.5, 1) or to stdout/stderr, which is redirected by the default
MCP configuration to PROG.log. The logging format is not yet completely consistent across programs.

46

Moreover, the logging entries might not be easy to understand because they contain some details which
are not interesting to a potential postmaster, but to developers. Nevertheless, the logging entries should
show the flow of mail through the system. See Section 10.3 for an explanation of the format of logfile
entries.

Note: logfiles must exist with the proper owner and permissions to be used. Neither MCP nor the
modules will currently create logfiles. This is done by make install, i.e., misc/sm.setup.sh, which
parses meta1.conf to extract the section titles/names and user entries to create the logfiles with the
correct name and owner. This does not (yet) properly work if unique logfile names are created, see Section
8.2, 3.

4.8.1 Logfile Rotation

Unless syslog(3) is used (see Section 3.5, 1), logfile rotation can be achieved by copying the existing
logfile to a backup file, e.g.,

cp qmgr.log qmgr.log.0

and sending a USR2 signal which will cause the processes to rewind the logfile. Note: the author is aware
that this is not an optimal solution, however, using syslog(3) will usually provide a better way.

4.9 Regular Checks

There are at least two things that should be done regularly:

1. Check the logfile for errors3:

$ egrep ’sev=(ALERT|CRIT|ERR|FAIL)|\<assertion\>’ $LOGFILE

2. Keep track of the size of the processes, e.g,

$ date >> $MTAPROCS

$ ps axuww | grep ’^meta1’ | sort >> $MTAPROCS

If one of the processes continuously grows then MeTA1 should be compiled with -DSM HEAP CHECK

(see Section 12.1.5) and a heap dump should be taken regularly by sending the USR1 signal to the
process. By comparing subsequent heap dumps it should be possible to locate a possible memory
leak.

Please report problems that cannot be resolved locally, see Section 1.4.1.

3See egrep(1) for the correct syntax for word delimiters on your OS.

47

4.10 Dealing with Errors

4.10.1 Resource Problems

Resource problems in certain parts of the code can lead to a stop of the involved program. In such a case
it will be restarted automatically but if the resource problem has not been taken care of the MTA may
stop again. In that case manual interaction is required. The simple solution to a resource problem is of
course to add more resources (RAM/disk) or to free up some resources, e.g., stopping programs that do
not need to run or deleting unused files. There are also ways to control resource usage within MeTA1:

• memory shortage: the memory usage of MeTA1 can be controlled by restricting the size of various
data structures, see Section 3.8, e.g., AQ_max_entries, IQDB, and OCC_max_entries. However,
setting these values too low will result in a very slow MTA that may operate in a degraded state
which is not acceptable.

• disk shortage: MeTA1 has options that let it decide how much free disk space is needed for operation,
see Section 3.8: ok_disk_space and min_disk_space. However, if there is not enough space to
store the envelope databases (DEFEDB and IBDB) then the system cannot work, hence sufficiently
free disk space is essential for proper operation.

4.10.2 Database Problems

See Section 7.1 for some background information about the usage of the various databases before trying
to fix any possible problems.

If the deferred database is corrupted then the Berkeley DB utilities to deal with such situations should
be tried [Sleb], e.g., db_recover.

Currently messages stored in CDB have the transaction identifier (ss_ta, see Section 10.3) as filename.
In the worst case, i.e., if IBDB or DEFEDB are destroyed, this allows to reconstruct the envelope data
together with the logfile entries. See the script misc/rcvrenvfromlog.sh for an example, here is a
description of its operation. First, check which messages are still in CDB: in the CDB directory (3.4:
CDB_base_directory) issue:

ls -1 [0-9A-F]/S*

Then search for each of those transaction ids ($TAID) in the logfile ($LOG):

$ egrep "ss_ta=$TAID, (mail|rcpt)=" $LOG | \

sed -e ’s;^.*\(mail=<.*>\), .*;\1;’ -e ’s;^.*\(rcpt=<.*>\), .*;\1;’

will show the sender (mail=) and the recipients (rcpt=). Based on this data it is possible to resend the
messages.

Note: contributions in this area are welcome, e.g., better scripts that perform more checks and maybe
allow for completely automatic recovery.

48

4.10.3 Writing Core Dumps

By default, all MeTA1 processes are executed in the main queue directory. As those processes are running
with different user and group ids not all of them can write a core dump into that directory if a fatal error
occurs. Some operating systems have commands (e.g., coreadm(1M) on SunOS 5.x) to specify a different
directory in which a core dump is written. On operating systems where such a command is not available,
the option working_directory can be used (see Section 8.2, item 4).

4.11 Replacements for Features available in other MTAs

MeTA1 does currently not offer some of the features that are available in other MTAs. This section
describes replacements or workarounds for some of those features.

1. Address Masquerading: The best way to use the correct e-mail addresses is to properly configure
your MUA. Some MUAs offer more flexibility for this than the default masquerading features of
sendmail 8, e.g., mutt [mut] allows to select sender addresses based on recipient addresses.

Alternatively a mail submission program (MSP) can be used which offers address rewriting capa-
bilities, e.g., the MSP from sendmail 8.

2. .forward: procmail can be used as LDA (see Section 4.3.1) and its configuration file .procmailrc
allows to implement the same functionality as a .forward from sendmail 8 and some other MTAs.

3. Sending mail to programs: see previous item 2: this can be done with the help of procmail.

4. Appending mails to files: see item 2: this can be done with the help of procmail.

49

Chapter 5

Policy Milter

5.1 Policy Milter Overview

MeTA1 has support for a policy milter which is similar to a milter in sendmail 8. The API is slightly
different, however, it should be possible to write an compatibility layer to emulate the sendmail 8 API.
Another difference is that MeTA1 itself only talks to a single pmilter. Support for multiple pmilters should
be implemented in a multiplexor that connects to multiple pmilters and coordinates their responses.

5.2 Native Policy Milter API

Note: this API may evolve over time.

Naming conventions: A policy milter (also called pmilter) is a program that uses the API provided by
libpmilter. The latter interacts with the SMTP servers via an internal protocol, i.e., this protocol can be
changed without changing the visible API and should not directly be accessed by a user application.

5.2.1 Data Structures

libpmilter itself uses three context structures all of which must be treated by a milter as opaque.

1. pmg ctx: “global” libpmilter context (only one per process).

2. pmss ctx: libpmilter context per SMTP server that connects to this instance. There can be multiple
SMTP servers connecting to one libpmilter instance.

3. pmse ctx: libpmilter context per SMTP session.

Any of the libpmilter functions takes one of these contexts as parameter; e.g., all SMTP session oriented
functions have a parameter of type pmse ctx P.

A milter can have its own contexts for each of these three environments, see Section 5.2.5.

50

5.2.2 Start and Stop

The functions in this section return SM SUCCESS (0) on success and a negative value in case of an error.

First libpmilter must be initialized; a pmilter must specify a variable pmg ctx P pmg ctx; which is passed
per reference to the initialization function:

sm ret T sm pmfi init(pmg ctx P *pmg ctx)

The pmilter global context must be treated as opaque data structure, it is passed to subsequent libpmilter
function calls.

Next pmilter starts libpmilter by handing control over to the library; the pmilter passes a description of
its requirements and functionality:

sm ret T sm pmfi start(pmg ctx P pmg ctx, pmilter P pmilter)

A milter can stop by calling:

sm ret T sm pmfi stop(pmg ctx P pmg ctx)

There are various functions to set some options which can be called after libpmilter is initialized but
before it is started. To set the path of the Unix domain socket over which the SMTP servers (see Section
3.10, item 17) and libpmilter communicate:

sm ret T sm pmfi setconn(pmg ctx P pmg ctx, const char *path)

The backlog parameter of the listen(2) function can be set:

sm ret T sm pmfi setbacklog(pmg ctx P pmg ctx, int backlog)

The debug level of libpmilter might be set via (this requires knowledge of the internals of the library
which can be acquired by looking at the source code):

sm ret T sm pmfi setdbg(pmg ctx P pmg ctx, int debuglevel)

To set the communication timeout:

sm ret T sm pmfi settimeout(pmg ctx P pmg ctx, int timeout)

5.2.3 New SMTP Server

Whenever an SMTP server connects to a milter an option negotiation is performed (similar to ESMTP
itself). A pmilter can check whether server capabilities are acceptable and return the options that it
wants:

sm ret T pmfi negotiate(pmss ctx P pmss ctx, uint32 t srv cap, uint32 t srv fct, uint32 t srv feat,

uint32 t srv misc, uint32 t *pm cap, uint32 t *pm fct, uint32 t *pm feat, uint32 t *pm misc)

Currently only the capabilities field is used: srv cap is set by the SMTP server to a list (implemented
as bit field) of phases of the ESMTP dialogue that can be passed to a pmilter. In turn the pmilter must
set *pm cap to includes those phases of the ESMTP dialogue that it wants to receive. For details, see
include/sm/pmilter.h. For each of those phases a callback is invoked (see Section 5.2.4) which must
be set by the pmilter in its description structure struct pmilter S (see include/sm/pmfapi.h).

51

5.2.4 SMTP Session and Transaction

The protocol steps from ESMTP are forwarded to the policy milter which can decide to accept or reject
them.

• New SMTP session:

sfsistat T pmfi connect(pmse ctx P pmse ctx, const char *hostname, sm sock addr T *hostaddr)

hostname: host name, as determined by a reverse lookup on the host IP address; hostaddr: host
address, as determined by a getpeername(2) call on the SMTP socket.

• SMTP HELO/EHLO command:

sfsistat T pmfi helo(pmse ctx P pmse ctx, const char *helohost, bool ehlo)

helohost: Value passed to HELO/EHLO command, which should be the domain name of the sending
host. ehlo: true iff EHLO was used.

• MAIL (envelope sender):

sfsistat T pmfi mail(pmse ctx P pmse ctx, const char *mail, char **argv)

mail: envelope mail address; argv: null-terminated MAIL command arguments.

• RCPT (envelope recipient):

sfsistat T pmfi rcpt(pmse ctx P pmse ctx, const char *rcpt, char **argv)

rcpt: envelope recipient address; argv: null-terminated RCPT command arguments.

• DATA:

sfsistat T pmfi data(pmse ctx P pmse ctx)

• unknown/not implemented SMTP command:

sfsistat T pmfi unknown(pmse ctx P pmse ctx, const char *cmd)

cmd: SMTP command. Note: this is not yet implemented.

• For each chunk of a message:

sfsistat T pmfi msg(pmse ctx P pmse ctx, unsigned char *msgp, size t msglen)

msgp: pointer to message data; msglen: length of message data. There may be multiple message
chunks passed to the filter. End-of-lines are represented as received from SMTP (normally Carriage-
Return/Line-Feed; CRLF). Notes:

– the last message chunk contains the final dot of the SMTP transmission, i.e., “CRLF.CRLF”

– the message is not modified in any form, i.e., dots at the begin of a line are duplicated (by the
SMTP client) as specified in section 4.5.2 of RFC 2821 [Kle01] which must be undone by the
application if so desired.

– the message is streamed while being received. That is, the mail is not first stored on disk and
then sent to the filter, but each part received from the client is sent directly to the filter (at
the same speed as received from the network which might be slow). This may mean that the
filter does not receive the entire message as the transmission may get interrupted or the SMTP
server may decide to skip the rest of the message because it exceeds the maximum size.

– the return code is ignored unless SM SCAP PM MSG RC is set, see Section 5.2.11, item 2.

52

• End of message (final dot of message has been received):

sfsistat T pmfi eom(pmse ctx P pmse ctx)

• Message is aborted outside of the control of the filter, for example, if the SMTP client issues an
RSET command.

sm ret T pmfi abort(pmse ctx P pmse ctx)

• QUIT (end of an SMTP session):

sm ret T pmfi close(pmse ctx P pmse ctx)

This is called when an SMTP session ends.

5.2.5 Set and Get pmilter Contexts

As explained in Section 5.2.1 a milter can have a “global” context pmilter g ctx, a context per SMTP
server pmilter ss ctx, and a context per SMTP session pmilter se ctx. The following functions are
provided to set and get these contexts.

Set the “global” context pmilter g ctx:

sm ret T sm pmfi set ctx g(pmg ctx P pmg ctx, void *pmilter g ctx).

This must be done after libpmilter has been initialized but before control is transferred to it.

To retrieve the “global” context invoke:

void *sm pmfi get ctx g(pmg ctx P pmg ctx)

Note: this requires the “global” libpmilter context which is not usually passed to pmilter functions in
callbacks. See below how to access the “global” context pmilter g ctx from other places.

To set the pmilter context per SMTP server pmilter ss ctx use:

sm ret T sm pmfi set ctx ss(pmss ctx P pmss ctx, void *pmilter ss ctx);

to retrieve it call:

void *sm pmfi get ctx ss(pmss ctx P pmss ctx)

The “global” pmilter context pmilter g ctx can be retrieved from the libpmilter context per SMTP
server:

void *sm pmfi get ctx g ss(pmss ctx P pmss ctx)

At the lowest level a context per SMTP session pmilter se ctx can be set via:

sm ret T sm pmfi set ctx se(pmse ctx P pmse ctx, void *pmilter se ctx)

and retrieved by:

void *sm pmfi get ctx se(pmse ctx P pmse ctx).

Just as before there is a function to retrieve the pmilter context per SMTP server pmilter ss ctx from
the libpmilter context per SMTP session:

void *sm pmfi get ctx ss se(pmse ctx P pmse ctx)

Note: if a pmilter uses these contexts, then it is useful that each “lower level” context contains a link to
its “higher level” context. That is, each pmilter context per SMTP session pmilter se ctx should have

53

a pointer to its pmilter context per SMTP server pmilter ss ctx which in turn should have a pointer
to the “global” pmilter context pmilter g ctx. This allows access from a function that is specific to a
SMTP session to each relevant context.

5.2.6 Accessing MTA Symbols

A pmilter can set a list of symbols it wants to receive from the MTA by calling

sm pmfi setmaclist(pmss ctx P pmss ctx, uint where, ...)

during the option negotiation, i.e., in pmfi negotiate(). The parameter where denotes the stage of the
ESMTP dialogue when the value of the symbol should be sent. It must be one of

PM SMST CONNECT Session start
PM SMST EHLO EHLO or HELO command
PM SMST MAIL MAIL command
PM SMST RCPT RCPT command
PM SMST DATA DATA command
PM SMST DOT Final dot of mail body

A sequence of up to PM MAX MACROS macros can be requested which must end with PMM END. Valid values
are:

1. PMM SRVHOSTNAME hostname of SMTP server.

2. PMM SEID session id.

3. PMM CLIENT RESOLVE result of client lookups.

4. PMM MAIL TAID transaction id.

5. PMM DOT MSGID Message-Id.

6. PMM TLS VERSION TLS/SSL version used.

7. PMM TLS CIPHER SUITE cipher suite used.

8. PMM TLS CIPHER BITS effective key length of the symmetric encryption algorithm.

9. PMM TLS ALG BITS maximum key length of the symmetric encryption algorithm. This may be less
than the effective key length for export controlled algorithms.

10. PMM TLS VRFY the result of the verification of the presented cert.

11. PMM TLS CERT SUBJECT the DN (distinguished name) of the presented certificate.

12. PMM TLS CERT ISSUER the DN (distinguished name) of the CA (certifcate authority) that signed
the presented certificate (the cert issuer).

13. PMM TLS CN SUBJECT the CN (common name) of the presented certificate.

14. PMM TLS CN ISSUER the CN (common name) of the CA that signed the presented certificate.

Notes:

54

• PMM MAIL TAID cannot be requested before PM SMST MAIL and PMM DOT MSGID can only be requested
at stage PM SMST DOT.

• All macros beginning with PMM TLS are only valid after a STARTTLS command.

To retrieve the value of a symbol the function

sm pmfi getmac(pmse ctx P pmse ctx, uint32 t macro, char **pvalue)

can be used in the various callback functions of the ESMTP dialogue. If the macro was not in the request
list, an error will be returned. If the macro has not yet been received, *pvalue will be NULL. Otherwise
*pvalue will point to the value of the macro. Note: the string to which *pvalue points must not be
changed.

5.2.7 Sender Modification

The sender address (MAIL) can be replaced:

sm ret T sm pmfi mail rplc(pmse ctx P pmse ctx, const char *mail pa, char **argv)

This function must only be called during pmfi eom(). The address mail pa must be in RFC 2821 format.
The argument argv can be used to specify SMTP parameters for the sender address, however, this is
currently not implemented, hence it must be set to NULL for now.

5.2.8 Recipient Modifications

Recipients can be added:

sm ret T sm pmfi rcpt add(pmse ctx P pmse ctx, const char *rcpt pa, char **argv)

or deleted:

sm ret T sm pmfi rcpt del(pmse ctx P pmse ctx, const char *rcpt pa, rcpt idx T rcpt idx)

These functions must only be called during pmfi eom(). The addresses rcpt pa must be in RFC 2821
format. The argument argv can be used to specify SMTP parameters for the recipient address, however,
this is currently not implemented, hence it must be set to NULL for now. As the MTA does not remove
identical recipient addresses, the address itself is not sufficient to identify one RCPT, but its index must
be specified too. This index can be retrieved during a RCPT command (pmfi rcpt()) using

sm ret T sm pmfi getrcpt idx(pmse ctx P pmse ctx, rcpt idx T *prcpt idx)

Note: it is invalid to remove all recipients of a transaction. To discard a transaction, return SMTP R DISCARD

as a result of one of the transaction oriented callbacks, e.g., pmfi eom().

5.2.9 Header Modifications

To request modifications of the header of a mail being sent, the function

sm pmfi hdr mod(pmse ctx P pmse ctx, uint type, uint pos, const unsigned char *header)

can be used. This function must only be called during pmfi eom(). The argument type specifies
which kind of modification is requested, legitimate values are defined in include/sm/hdrmoddef.h;

55

these are: SM HDRMOD T PREPEND, SM HDRMOD T INSERT, SM HDRMOD T REPLACE, SM HDRMOD T REMOVE, and
SM HDRMOD T APPEND.

The argument header must be a complete header line including the proper line ending (CRLF). The argu-
ment pos specifies the position for the types SM HDRMOD T INSERT, SM HDRMOD T REPLACE, and SM HDRMOD T REMOVE.
The first header of the original mail has position one; zero is the Received: header added by the SMTP
server.

5.2.10 Message Replacement

If a pmilter wants to replace the entire message, the function pmfi eom()must return the value SMTP R RPLCMSG.
This will cause the invocation of the callback

sfsistat T pmfi msg rplc(pmse ctx P pmse ctx, const unsigned char **pmsgchunk, size t *pmsglen)

which then must set a pointer to a message chunk and its length. Multiple chunks can be sent by returning
SMTP R CONT as result of the callback. For the last chunk, SMTP R OK should be returned. The size of each
chunk (pmsglen) must be less than PMILTER CHUNK SIZE as defined in include/sm/pmfapi.h.

libpmilter will thereafter invoke the callback

sfsistat T pmfi msg rplc stat(pmse ctx P pmse ctx, sm ret T status)

to give the pmilter a chance to clean up after the transaction, and to let it know whether the message
replacement was successful.

Notes:

• as the entire message is replaced and by default only the data that is received from the SMTP
client is sent to a pmilter, the Received: header field that smtps generates is lost. To avoid this, a
pmilter can request to receive that header field by setting SM SCAP PM SND RCVD and sending it as
first chunk of the message replacement.

• the message must be in SMTP format, i.e., lines must end in CRLF and the final chunk should
have the usual SMTP end of message indication: CRLF dot CRLF (\r\n.\r\n), however, it can
also just end in CRLF.

• if pmfi msg rplc() encounters an error, e.g., due to an API violation or due to a communication
error with smtps, then it will invoke pmfi msg rplc stat() directly without waiting for the entire
message even if it consists of more chunks.

5.2.11 Further Capabilities

In addition to selecting which SMTP commands to send to pmilter (see Section 5.2.3), there are some
more capabilities available:

1. SM SCAP PM RCPT ST causes the MTA to send RCPT information even if the command has been
rejected, e.g., because the recipient is unknown, the recipient has been rejected due to access map
checks, or relaying has been denied. Note: RCPT commands that are rejected for other reasons,
e.g., because the address is syntactically invalid, or some limit (maximum number of recipients) is
exceeded, will not be sent to pmilter.

The function

56

sm ret T sm pmfi getstatus(pmse ctx P pmse ctx, sfsistat T *pstatus)

should be used in that case to access the current SMTP reply code for the command. This func-
tionality is useful for a pmilter that wants to keep track of all recipients, not just those which are
accepted, e.g., to deal with dictionary attacks.

2. SM SCAP PM MSG RC allows a pmilter to return a reply code as specified in 5.2.13 from pmfi msg().
This is useful if a pmilter can make a decision about the mail without having to read the entire
message. If this capability is turned on, pmfi msg() must return SMTP R CONT for each message
chunk by default to receive subsequent parts. Otherwise pmfi eom() will not be called but the
return code from pmfi msg() will be used at the end of the message (in response to the final dot).

5.2.12 Miscellaneous Functions

To set a reply text in an SMTP session or transaction oriented callback in addition to the reply code use:

sm ret T sm pmfi setreply(pmse ctx P pmse ctx, const char *reply)

Note: the reply string must contain the full SMTP reply, i.e., it must be of the form

XYZ D.S.N text\r\n

where XYZ is a valid SMTP reply code (see RFC 2821 [Kle01]) which must match the return code of the
function from which sm pmfi setreply() is called, D.S.N is an enhanced status code as defined in RFC
3463 [Vau03] and the rest is an explanation of the status including CRLF (\r\n). The text can be a
multi-line reply in the form:

XYZ-D.S.N text1

XYZ-D.S.N text2

XYZ D.S.N text3

which must be specified in the format required by SMTP:

XYZ-D.S.N text1\r\nXYZ-D.S.N text2\r\nXYZ D.S.N text3\r\n

To set reply codes for commands that need multiple reply values the function:

sm ret T sm pmfi setreplies(pmse ctx P pmse ctx, uint nreplies, int *rcodes, const char **rtexts)

must be used. Currently this function makes only sense if PRDR is available in the SMTP server and
actually used by the client. A pmilter can determine the latter by parsing the arguments of the MAIL

command (see pmfi mail()). Note: currently the argument rtexts is ignored, only the array of reply
codes (rcodes) is used. The size of this array must be nreplies which must match the number of valid
RCPTs for this transaction. The reply codes in that array must be in the same order in which the RCPTs
have been received.

Return version number of libpmilter:

sm ret T sm pmfi version(pmg ctx P pmg ctx, uint32 t *major, uint32 t *minor, uint32 t *patchlevel)

This can be used to compare the version number of the library against which pmilter is linked with the
version number against which pmilter is compiled. The major version numbers must match otherwise
the program will not run.

Signal handler callback:

sm ret T pmfi signal(pmg ctx P pmg ctx, int sig)

57

This function will be called when a USR1 or USR2 signal is received; it is not called within a signal
handler, i.e., the code does not have to be signal-safe. Note: this is not yet implemented.

5.2.13 Return Values

SMTP Session and transaction oriented functions use sfsistat T as return type. Allowed values for this
type are (as defined in include/sm/smreplycodes.h):

• SMTP R OK: accept command.

• SMTP R ACCEPT: accept entire transaction or session depending on where this value is returned.
Note: this is just a shortcut for SMTP R SET QUICK(SMTP R OK).

• SMTP R DISCARD: discard effect of command.

• SMTP R CONT: continue other checks.

• SMTP R SSD: shut down SMTP session.

• SMTP R TEMP: reject command with a temporary error.

• SMTP R SYNTAX: syntax error.

• SMTP R PERM: reject command with a permanent error.

• other valid SMTP reply codes [Kle01].

Additionally return values can be modified by using SMTP R SET QUICK(returnvalue). See Section 3.9.3
for the effects of this.

For functions that use sm ret T as return type a successful call returns SM SUCCESS (0) and a negative
value in case of an error.

5.2.14 Implementation Notes

As libpmilter currently does not keep track of the status of a transaction or session, the functions
pmfi abort() and pmfi close() may be called even if no transaction or session is currently active. This
can happen if an SMTP server unexpectedly aborts the connection to a policy milter. An application
must be aware of this and keep track of its state properly.

5.3 Policy Milter Examples

The program libpmilter/example-pmilter-0.c is a simple example how to write a policy milter. It
might be useful as a template for other milters. For some operating systems it might be necessary to
change the list of system include files (see also Section 5.3.1).

Also available is a policy milter contrib/milter-spamd.c that offers an interface to spamd(1) which
is a daemonized version of spamassassin(1). milter-spamd.c is written by Daniel Hartmeier [Harc]
(see the file itself for the Copyright) for sendmail 8 and modified to work with the policy milter API of
MeTA1.

58

5.3.1 Compiling Policy Milters

The program libpmilter/example-pmilter-1.c shows which .h files need to be included from the
MeTA1 distribution: those are referenced as "sm/name.h". As a minimum, a pmilter also needs def-
initions for bool (usually available via stdbool.h) and int16 t, int32 t, uint16 t, and uint32 t

(usually available via stdint.h or inttypes.h). If those type definitions are not available, the file
"sm/generic.h" contains default definitions that are suitable for most systems. Those can be ac-
tivated via the compile time options META1_NEED_INTN and META1_NEED_BOOL, respectively. The file
libpmilter/makefile.pmilter is an example makefile (for make(1)) that works on systems like SunOS
5.10. It can be easily adapted to other operating systems; it shows the list of libraries that are needed
from the MeTA1 distribution.

59

Chapter 6

Miscellaneous

6.1 Troubleshooting

If something goes wrong then the component which fails usually logs an error message. Depending on the
configuration, an error is either logged via syslog(3) or printed into a logfile (as explained in Section
4.8). Note: even if the system is configured to use syslog(3) (Section 3.4, item 1) errors at startup are
printed to the logfile if those errors occur before the configuration is read, hence those files need to be
checked too.

6.1.1 Startup Problems

If MeTA1 fails to start properly the reason should be logged as explained before. Some possible reasons
are

1. invalid configuration file: use misc/smconf to check the syntax before deploying a new configuration
file.

2. wrong permissions: check the permissions as explained in Section 2.4:

$./misc/sm.check.sh

3. missing or invalid maps: make sure maps are created properly with createmap(8).

6.1.2 Logfile Entries

Most logfile entries should be self-explaining. However, some are more subtle and indicate only indirectly
what might be wrong. Example:

smtps: ... client_name=Hostname_Not_Determined

indicates that the access map (Section 3.10, 3b) is not used which might point to a misconfiguration.

60

6.2 Caveats

The following problems exist in this version of MeTA1:

• If the system runs out of memory then the MTA may not act gracefully in all cases, see Section
4.10.1.

• If a disk that is used for one of the queues becomes full, some errors may not be handled gracefully,
see Section 4.10.1. To avoid this, MeTA1 has some limits for the amount of available disk space
that is required to accept mail (see Section 3.8).

6.3 Checks in SMTP Server

The SMTP server has some builtin checks which are explained in the following.

6.3.1 Strict RFC Compliance

The SMTP server currently enforces fairly strict RFC 2821 compliance. For example, a MAIL command
must be given in the following format

MAIL From:<user@some.domain>

i.e., the angle brackets are required, there must be no space after ”:”, etc. This has the useful side effect
of catching some spam programs:

5.5.0 Syntax error., input=MAIL FROM: <blafwhoyqjywvu@asia.com>

Moreover, the server requires that lines end in CRLF (\r\n), it will not accept command input without
the correct line ending, i.e., trying to do that will cause a read error.

Another requirement is that MX records must point to hostnames, not IP addresses [Moc87]. This
applies to receiving mail – a MAIL address using a domain whose MX record points to an IP address
will be rejected (553 5.1.8 Sender address does not exist) – as well as to sending mail – a RCPT

address with a domain whose MX record points to an IP address is not resolved by SMAR.

6.3.2 Various Checks

The EHLO parameter is checked against the local hostname unless the connection comes from localhost (IP
address 127.0.0.1) or the access map returned quick:ok or quick:relay, see Section 3.9.3. Violations
will be logged with a status text of Identity Theft.

The SMTP server checks for “illegal pipelining”, i.e., whether a client sends commands before it is allowed
to do so. Moreover, it also checks whether the client sends a command before the initial greeting. Note:
according to RFC 2821 the client SHOULD wait for the greeting, but this is not (yet) a requirement. To
turn this off, use allow_data_before_greeting (Section 3.10, item 3m.)

61

6.4 Security Checks

There are currently no additional security checks when creating/accessing files or directories besides those
provided by the operating system. This could be a problem if MCP is misconfigured because it runs as
root. Hence it will simply overwrite existing files if those are specified in the configuration file. The
other modules run as non-privileged users, hence the OS provides sufficient access checks – unless the
system is misconfigured and the MeTA1 accounts are misused for other purposes too.

6.5 Restrictions

Besides the obviously missing functionality there are some other things that may restrict the use of
MeTA1 in certain environments. Here is an incomplete list:

• DNS lookups currently use only UDP by default, hence answers that exceed the UDP packet size
will cause problems. However, such DNS packets are really rare (because they cause operational
problems in various places, e.g., some firewalls may block TCP for port 53). A possible workaround
might be to force TCP (see Section 3.9.2, item 1(a)i), the correct way is a change in the DNS library
to retry with TCP, but this has not yet been implemented.

• Map lookups convert keys to lower case before checking an entry. In general this is not a problem
unless local addresses rely on preserving the case of the local parts of addresses. That is, local
addresses which require upper case characters do not work.

• Multi-line replies from an SMTP server are currently neither stored (for a possible DSN) nor logged,
instead just the last line is used for that purpose.

Everything that is not described in the documentation does either not exist in the current version of
MeTA1, or is unlikely to work. However, there may be omissions in the documentation, please inform
the author of such bugs.

6.6 Code Review, Enhancements, Patches

Source code inspection as well as patches and suggestions are very welcome.

Enhancements and extensions are very welcome too, especially to extend the basic functionality of the
current MeTA1 release.

6.7 Porting

Porting to currently unsupported platforms including non-Unix systems is encouraged. Note that the
destination system must support statethreads [SGI01] and Berkeley DB 4.x. It might be necessary to
port those first.

62

6.8 Version Naming

Each MeTA1 version has a name in the following format:

MeTA1-major.minor.[qualifier]qualifier-version.patchlevel

The major number changes between releases when new features are introduced (major changes, but see
below about the development phases). The minor number changes when no new features are introduced,
but bugfixes and (portability) enhancements are made. That is, no configuration changes are needed
when going from one minor version to the next. The patchlevel number is used for intermediate patches
between releases, e.g., if something is broken but it is not important enough for a new release because it
is barely used or encountered.

There are several different qualifiers:

1. PreAlpha: This means the software is not feature complete and hence might be missing some
functionality that is considered important by different users. Additionally, there is most likely no
compatibility in data structures stored on disk between different pre-alpha versions, e.g., when
upgrading from PreAlpha16 to PreAlpha17 the main queue format may have changed without
checks in the software for this. Hence old queues must be drained before upgrading. Moreover, the
protocols used for communication between MeTA1 modules may have changed without providing
backward compatibility, therefore modules from different releases must not be used together. Such
incompatibilities are usually stated in the list of changes ChangeLog.

Do not run this on a production server unless you are aware of the possible consequences. The
software is still under development and not fully functional. Moreover, it may not be sufficiently
tested.

2. Alpha: In this state the software is ready for public testing but its features may still change.

3. Beta: Feature changes are unlikely, but still possible if required. Usually only bugfixes occur
between beta versions.

4. Gamma: This is a release candidate. Usually only critical bugfixes occur between gamma versions.
There might be no gamma versions at all if beta testing was considered successful and sufficient.

5. A release version does not have an explicit qualifier.

The qualifier-version is used to distinguish between different version of the same qualifier, e.g., PreAlpha16
and PreAlpha17. It is 0 for a release version.

Examples for version names: MeTA1-0.0.PreAlpha19.0, MeTA1-1.0.0.0.

See the file include/sm/version.h how the version string is converted into a 32 bit number that denotes
the version number.

6.8.1 Snapshots

From time to time snapshots may be made available. Those are marked with a date in the distribution
file name, e.g., meta1-0.0.16.0-20040928.tar.gz. The name indicates that it is a snapshot of what
will become version meta1-0.0.16.0, i.e., the next release will have the given version number (without
the date). The only other indication in the distribution is the inclusion of an s in the version number
that is shown in the version output of the main components. A snapshot did not go through the usual
release cycle and is made available as technology preview.

63

Chapter 7

Data Flow in MeTA1

7.1 Data Flow in MeTA1

This Section explains how MeTA1 stores information about messages that are transferred. It gives some
background information which is useful for troubleshooting. Details about the operation of MeTA1 can
be found in [Aßmb].

MeTA1 uses two different databases on disk to store envelope information (sender and recipients): IBDB:
incoming backup database, DEFEDB: deferred envelope database, and one database to store message
contents: CDB: content database. See Section 2.4.1 about the location and layout of these databases1.
The queue manager additionally uses two internal envelope databases: IQDB (Incoming Queue DataBase)
and AQ (Active Queue).

Incoming mails are accepted by the SMTP servers which store the content in the CDB (complete messages
including headers in the format as received). The envelope information, i.e., sender (MAIL) and recipients
(RCPT), is stored by the queue manager in IQDB and written to IBDB which is just a log of envelope
data and what happened to it. That is, the files in IBDB are written sequentially and are continuously
growing. If a file reaches its size limit (see Section 3.8: IBDB), then it is closed and a new file is opened.
For a delivery, the envelope information must be transferred into AQ. For incoming mail this happens as
soon as a transaction is accepted, in which case the data is moved from IQDB to AQ. A transaction is
only accepted if the message is safely written to CDB and the envelope information has been committed
to IBDB, i.e., all information is committed to persistent storage2.

The scheduler in QMGR takes recipient envelopes from AQ and creates transactions which are given to
the SMTP clients for delivery. An SMTP client takes the transaction information and tries to send a
message whose content is read from CDB. After a successful delivery attempt a record is written to IBDB
that logs this information. A cleanup task removes periodically old IBDB files which contain only data
that is no longer referenced.

The deferred envelope database is only used if a message cannot be delivered during the first attempt. In
that case the appropriate envelope data is added to DEFEDB and a record is written to IBDB stating that
the data has been transferred to DEFEDB. Entries in DEFEDB contain a timestamp called next-time-
to-try at which QMGR reads them from the database into AQ and the scheduler tries another delivery

1the term database is used loosely here, only DEFEDB is a real database, the others are just ways to store some
information and access them in some way.

2If non-persistent storage is used for these databases mail can of course be lost.

64

attempt. If that succeeds, the entries are removed from DEFEDB, otherwise they are either requeued
with a new next-time-to-try (in case of a temporary error) or a DSN (bounce message) is generated (in
case of a permanent error).

65

Chapter 8

Advanced Configuration Options

8.1 Overview

Some configuration options are only needed in special situations and may require background knowledge
of the involved systems. Those advanced configuration options are explained in the subsequent sections.

8.1.1 Flags

Usually flags are not set and hence a configuration file only needs to turn on flags (if required). How-
ever, in some cases flags are set by default and under some rare circumstances need to be disabled.
To achieve this, the name of the flag can be prefixed with one of not , dont , no , -, !, or ~, e.g.,
~remove_unused_logfiles or dont_remove_unused_logfiles.

8.2 Advanced Configuration for MCP

1. max_processes: maximum number of processes to start [default: 1].

2. min_processes: minimum number of processes to start [default: 1].

3. use_id_in_logfile_name: if more than one process can be started then it might be useful to
have unique logfiles unless the processes use syslog(3). If set, this (boolean) option causes MCP
to include a unique identifier (the same as for pass_id, which must be used too) in the logfile
name. By default the logfile has the name of the section (or the section keyword if no section
name is given), preceeded by the log directory (option -L for MCP), and .log appended. If
use_id_in_logfile_name is turned on, then the numeric id is added before the extension, e.g.,
/var/log/meta1/mailer0.log for -L /var/log/meta1/ and a section with the name mailer.

4. working_directory: perform a chdir(2) to the specified directory before executing the process.
Note: this option essentially requires that all relevant pathnames in the configuration file are
absolute, otherwise it is very easy to misconfigure some pathnames, especially those shared between
different processes.

66

Note: the number of processes for almost all MeTA1 modules should be 1. It must be 1 for QMGR and
SMAR, it can be larger than 1 for SMTPC. For SMTPS it should be 1 in the default setup as the file
descriptor to which MCP binds on behalf of SMTPS can be passed to only one process.

8.3 Advanced Configuration for QMGR

1. connection_control_hash_table_size: size of the hash table used for connection control, i.e.,
number of incoming connections and connection rate (see Section 3.8, 18a and 18b)

2. debug_level: debug level (only if compiled with QMGR DEBUG).

3. subsection DEFEDB: Note: The Berkeley DB documentation [Sleb] should be consulted before mod-
ifying any of these options.

(a) page_size: DB page size (this can only be set when the DB is initially created).

(b) cache_size: DB cache size.

(c) KBytes_written_for_checkpointing: If non-zero, a checkpoint will be done if more than the
amount of KBytes of log data have been written since the last checkpoint (unit: KB).

(d) delay_between_2_checkpoints: Minimum delay between two checkpoints (unit: s).

(e) flags: flags for DEFEDB:

i. remove_unused_logfiles: this is on by default, hence to turn it off one of the forms
explained in Section 8.1.1, e.g., dont_remove_unused_logfiles, can be used. This should
only be done if the Berkeley DB logfiles are removed some other way, e.g., after archiving.

4. delivery_timeout: timeout for a single delivery attempt (unit: s). This value should be large
enough that even big mails can be delivered over a slow link before the QMGR considers the
delivery attempt a failure because the delivery agent did not return a result yet.

5. flags: configuration flags:

(a) reuse_connection: try to reuse open SMTP connections for delivery. Note: this feature is
still experimental.

6. max_fds: maximum number of file descriptors. This sets an upper limit on the number of clients
that can connect to QMGR.

7. max_threads: maximum number of threads.

8. min_threads: minimum number of threads.

9. scheduler_timeout: as a safety measure against unforseen problems an item is removed from AQ
after the specified timeout. This timeout must be large enough to allow for scheduling delays if all
delivery agents are busy which can happen if deliveries are slow or if there are fewer delivery agents
available than entries in the active queue.

10. SMAR_timeout: timeout in address resolver, i.e., how long to wait for a result from SMAR (unit:
s). Note: this value must be larger than the total DNS timeout and it must take alias expansion
into account.

11. subsection smtps:

(a) connection_control_cache_size: size of connection control hash table.

12. tests: testing only (available if QMGR is compiled with -DQMGR TEST). See the source code for
details.

67

8.4 Advanced Configuration for SMAR

1. DNS: this subsection contains DNS related options.

(a) flags: valid flags are:

i. use_TCP: use TCP instead of UDP for connections to a nameserver. Note: currently the
DNS resolver does not automatically fall back to a TCP connection if the reply was too
big. This may be added in a later version.

ii. use_connect: use connect(2) even if using UDP. This is required on systems like FreeBSD
jail(8).

2. max_fds: maximum number of file descriptors. This sets an upper limit on the number of clients
that can connect to SMAR.

3. max_threads: maximum number of threads.

4. min_threads: minimum number of threads.

8.5 Advanced Configuration for SMTP Server

1. daemon_address: address for daemon to listen on; this should not be used in normal operation.
Current (preliminary) format is: host:port, :port (listen on 0.0.0.0) host (port defaults to 8000).
Up to 16 addresses1 can be specified. See the notes below.

2. flags:

(a) background: fork(2) after start; this should not be used in normal operation.

(b) serialize_accept: serialize accept(2) calls, see the statethreads documentation [SGI01] for
details.

3. listen_queue: length of listen(2) queue; this must not be used in normal operation, i.e., if MCP
is used.

4. max_wait_threads: maximum number of waiting threads.

5. min_wait_threads: minimum number of waiting threads.

6. module_timeout: timeout for communication with other modules.

7. processes: number of processes to start.

8. tls:

(a) DSA_cert_file: file with DSA certificate in PEM format.

(b) DSA_key_file: file with private key for DSA certificate in PEM format.

9. wait_for_smar: maximum amount of time to wait for a reply from SMAR.

Notes: only one of daemon_address and pass_fd_socket must be specified. In normal operation it is
almost always pass_fd_socket because the SMTP server cannot bind to privileged ports, hence the file
descriptor must be passed from MCP.

1Compile time option SS MAX BIND ADDRS

68

8.6 Advanced Configuration for SMTP Client

1. connect_only_to: Specify an IP address to which all outgoing mail is sent. This can be used for
testing with otherwise real data, i.e., addresses, by running an SMTP sink2 on a computer and
specifying its IP address. Then all mails that should be sent via SMTP will go to that host instead
of the addresses determined by SMAR. Note: it is nevertheless a good idea to use firewall rules to
prevent mail going out to the internet, i.e., prohibit connections to port 25 to external hosts.

2. debug_level: debug level (only if compiled with SMTPC DEBUG).

3. flags:

(a) read_QUIT_reply: read the reply to the QUIT command instead of just closing the connection
after sending it.

(b) separate_final_dot_and_QUIT: send the final dot of a message and the QUIT command in
different TCP packages even if PIPELINING is offered. This can avoid problems with some
broken servers or firewalls.

(c) talk_to_myself: do not check whether server greets with the hostname of the machine on
which smtpc runs.

4. max_wait_threads: maximum number of waiting threads.

5. min_wait_threads: minimum number of waiting threads.

6. module_timeout: timeout for communication with QMGR.

7. remote_port: port to which connections should be made. Note: if multiple SMTP clients are
specified, all of them must use the same value for remote_port. Currently the scheduler requires
that all SMTP clients behave the same. If different ports are required, then those must be listed in
mailertable entries.

8. tls:

(a) DSA_cert_file: file with DSA certificate in PEM format.

(b) DSA_key_file: file with private key for DSA certificate in PEM format.

2For example, statethreads/examples/smtps2

69

Chapter 9

Tuning

9.1 Size of Queues, Caches, and Databases

All data structures in QMGR have some maximum size. This is not just done to avoid resource exhaustion
in high load situations but also to provide a feedback loop between SMTP servers (producers) and SMTP
clients (consumers). This feedback loop helps to avoid flooding the system with mails that it cannot
deliver fast enough. The incoming queue (IQDB) and the active queue (AQ) implement this feedback
loop. As explained in Section 7.1 the data from the SMTP servers is stored in the incoming queue first
which has a fixed size. If more data is produced than taken out (by the scheduler into the active queue)
the queue will fill up and the QMGR will throttle the SMTP servers by dynamically reducing the number
of available threads. Throttling the SMTP servers is done based on various resources, e.g., IQDB, AQ,
available disk space, and much more. Hence by limiting the size of IQDB (see Section 3.8, item 8a) and
of course the maximum number of threads in the SMTP servers the incoming flow of messages can be
controlled. The size of IQDB should be greater than the maximum number of threads in the SMTP
servers multiplied by the average number of recipients, otherwise transaction will be rejected before all
threads are busy.

The active queue should be large enough to provide enough work for all SMTP clients (threads) and it
must be larger than the largest number of recipients accepted by a single transaction (see Section 3.8,
item 1).

9.2 Disk I/O

In most MTAs disk I/O is the limiting factor unless special hardware is used which employs battery
backed RAM cache to achieve high I/O rates (IOP: I/O operations). If multiple disks are available, they
can be used to spread the load. Disk files (see Section 2.4.1) are used for:

1. IBDB: the directory can be linked to a different disk.

2. DEFEDB: the base directory can be changed via an option (Section 3.8, item 4a), as well as the
directory for logfiles (Section 3.8, item 4b).

3. CDB: the base directory can be changed via an option (see Section 3.4, item 2). Individual subdi-
rectories (see Section 2.4.1) can be linked to different disks.

70

9.3 Processes and Threads

The main MeTA1 processes are multi-threaded. However, two different threading implementations are
used: POSIX threads (pthreads) for QMGR and SMAR and statethreads [SGI01] for SMTP server
and client. Statethreads only switch between threads on network I/O operations as it is a threading
implementation in user space without kernel support. Hence operations that can take a long time, e.g.,
computations for asymmetric cryptography (as required during the STARTTLS handshake) or in some
cases even synchronous disk I/O, will not just stop a single thread but the entire process. If this happens
it is possible to start multiple SMTP servers, see Section 8.5, item 7. If it becomes necessary to start
multiple SMTP clients, then the MCP can be instructed to do so, see Section 8.2, item 1.

71

Chapter 10

Format Specifications

10.1 Socket Map

The socket map uses a simple request/reply protocol over TCP or UNIX domain sockets to query an
external server. Both requests and replies are text based and encoded as netstrings, i.e., a string “hello
there” becomes:

11:hello there,

Note: neither requests nor replies end with CRLF.

The request consists of the database map name and the lookup key separated by a space character:

mapname ’ ’ key

The server responds with a status indicator and the result (if any):

status ’ ’ result

The status indicator is one of the following upper case words:

OK the key was found, result contains the looked up value
NOTFOUND the key was not found, the result is empty
TEMP a temporary failure occured
TIMEOUT a timeout occured on the server side
PERM a permanent failure occured

In case of errors (status TEMP, TIMEOUT or PERM) the result field may contain an explanatory message.

Example replies:

31:OK resolved.address@example.com,

in case of a successful lookup, or:

8:NOTFOUND,

72

in case the key was not found, or:

55:TEMP this text explains that we had a temporary failure,

in case of a failure.

10.2 Format of Session/Transaction Identifiers

The format of session and transaction identifiers is specified in include/sm/mta.h. For the SMTP server
it consists of a leading ’S’, a 64 bit counter and an 8 bit “process” identifier, both of which are printed
in hexadecimal format. For the SMTP client it consists of a leading ’C’, an 8 bit “process” identifier, a
32 bit counter, and a 32 bit thread index, all of which are printed in hexadecimal format.

Examples: S00000000407CE49200, C010000137D00000000.

SMTP server session/transaction identifiers are unique until the 64 bit counter wraps around, SMTP
client session/transaction identifiers are unique only within a single invocation of QMGR.

Note: the format may change between different release of MeTA1, hence the identifiers should be consid-
ered opaque.

10.3 Logfile Format

The general format of entries in a logfile is a sequence of named fields which are separated by commas.
Each field consists of a name, an equal sign, and a value. If the value is a text field that is received from
an external (untrusted) source, then all non-printable characters, commas, and percent signs are shown
as their two digit hexadecimal ASCII representation with a leading percent sign. For example, the text

550 5.7.1 no, not now, 99% usage

is encoded as

550 5.7.1 no%2C not now%2C 99%25 usage

This encoding allows a logfile analyzer to use the comma symbol as a delimiter of fields without having
to perform complicated parsing, e.g, the Unix awk utility can be used with comma as field separator.
Note: suggestions for a better encoding or different solution for the problem are welcome (more details
can be found in [Aßmb]).

Logfiles use the identifiers described earlier such that transactions and sessions can be easily recognized.
For the following examples logfile entries have been slightly edited and line breaks have been inserted.

Here is one example of a session in an SMTP server:

ss_sess=S00000000407EAE3800, client_ipv4=127.0.0.1,

client_name=localhost.endmail.org.

ss_sess=S00000000407EAE3800, where=connection, starttls=successful

ss_sess=S00000000407EAE3800, ss_ta=S00000000407EAE4E00,

73

mail=<SENDER@meta1.org>, stat=0

ss_sess=S00000000407EAE3800, ss_ta=S00000000407EAE4E00,

rcpt=<RECIPIENT@meta1.org>, idx=0, stat=0

ss_sess=S00000000407EAE3800, ss_ta=S00000000407EAE4E00,

rcpt=<SOMEONE@SOME.DOMAIN>, idx=1, stat=0

ss_sess=S00000000407EAE3800, ss_ta=S00000000407EAE4E00,

msgid=<20040916050457.GG54961@endmail.org>, size=1177, stat=0

The first entry shows a successful session creation including the IPv4 address and the hostname of the
client. The second entry indicates that STARTTLS has been used. A new transaction is shown in the
third entry and two recipients are given thereafter (along with the index idx). The last entry shows
that the transaction was successful (status=0; 0 is used instead of 250 or other SMTP reply codes that
indicate success) and the size of the received mail (in bytes) as well as its Message-Id.

Here is one example of a session in an SMTP client:

da_sess=C01000006C800000002, status=connected, port=25, addr=64.81.247.36

da_sess=C01000006C800000002, where=connection, starttls=successful

da_sess=C01000006C800000002, da_ta=C01000006C900000002,

ss_ta=S00000000407EAE4E00, mail=<SENDER@meta1.org>, stat=0,

reply=250 2.5.0 MAIL command succeeded

da_sess=C01000006C800000002, da_ta=C01000006C900000002,

ss_ta=S00000000407EAE4E00, rcpt=<RECIPIENT@meta1.org>, stat=0,

reply=250 2.1.5 RCPT ok

da_sess=C01000006C800000002, da_ta=C01000006C900000002,

ss_ta=S00000000407EAE4E00, where=final_dot, size=1177, stat=0

This is very similar to the format of the entries entries in the SMTP server and should not require an
explanation. In addition to the delivery agent session and transaction ids (da sess and da ta) the SMTP
server transaction id (ss ta) is logged too. This makes it simple to track a message through the MTA.
Obviously ss ta can be used for multiple outgoing messages if the incoming message has been sent to
multiple recipients (maybe indirectly via an alias), hence this is not a unique identifier in the SMTP
client log.

QMGR can also log the delay time for each recipient, e.g.,

func=q_upd_rcpt_ok, rcpt_id=S00000000407EAE4E00-000000,

rcpt=<RECIPIENT@meta1.org>, xdelay=0, delay=1

where xdelay is the time for this delivery attempt, and delay is the total delivery time.

10.4 Format of Received Header

The format of the Received: header added by the SMTP server is specified in smtps/smtps.c.

Received: from EHLO-NAME (CLIENT-NAME [CLIENT-ADDR])

by HOST-NAME (SM-X-VERSION) with PROTOCOL

id SMTP-TA-ID; DATE

74

where PROTOCOL is one of ESMTP, ESMTPS, ESMTPA, ESMTPSA, or SMTP [New04]. If STARTTLS is active,
then (TLS=TLSVERSION, cipher=CIPHERSUITE, bits=CIPHERBITS, verify=VERIFYRESULT) is placed
before id, where TLSVERSION is the TLS protocol version, e.g., TLSv1, SSLv3, SSLv2; CIPHERSUITE
is the cipher suite that was in use, e.g., AES256-SHA, EDH-DSS-DES-CBC3-SHA, EDH-RSA-DES-CBC-
SHA, CIPHERBITS denotes the effective keylength (in bits) of the symmetric encryption algorithm of
the TLS connection, and VERIFYRESULT is one of the following:

OK verification succeeded.
NO no cert presented.
NOT no cert requested.
FAIL cert presented but could not be verified, e.g., the signing CA cert is missing.

Note: the name of the client is only shown if the access map feature is activated (see Section 3.10, 3b),
otherwise the time-consuming DNS lookups (PTR and A records) are not performed.

10.5 Format of DSNs

DSNs (bounces) are currently not compliant to RFC 1891ff, however, a configuration option (Section 3.8,
item 5(b)ii) can be set to send DSNs in MIME format, i.e., Content-Type: multipart/mixed with
Content-Type: message/rfc822 for the original message. The format looks like this:

From: Mailer-Daemon@HOST.NAME

Subject: Undeliverable mail

A mail from you could not be delivered. See below for details.

and then a list of recipients and the reasons for the failure, e.g.,

Recipient:

<user@example.com>

Remote-MTA:

10.2.3.4

Reason:

550 5.7.1 <user@example.com>... Access denied

during RCPT

75

Chapter 11

Setup for STARTTLS

11.1 Certificates for STARTTLS

When acting as a server, MeTA1 requires X.509 certificates to support STARTTLS: one as certificate for
the server, at least one root CA (CAcert_file), i.e., a certificate that is used to sign other certificates,
and a path to a directory which contains certs of other CAs (CAcert_directory). The file specified via
CAcert_file can contain several certificates of CAs. The DNs of these certificates are sent to the client
during the TLS handshake (as part of the CertificateRequest) as the list of acceptable CAs. However, do
not list too many root CAs in that file, otherwise the TLS handshake may fail; e.g.,

error:14094417:SSL routines:SSL3_READ_BYTES:

sslv3 alert illegal parameter:s3_pkt.c:964:SSL alert number 47

You should probably put only the CA cert into that file that signed your own cert(s), or at least only
those you trust. The directory specified via CAcert_directory must contain the hashes of each CA
certificate as filenames (or as links to them). Symbolic links can be generated with the following two
(Bourne) shell commands:

C=FileName_of_CA_Certificate

ln -s $C ‘openssl x509 -noout -hash < $C‘.0

An X.509 certificate is also required for authentication in client mode, however, MeTA1 will always use
STARTTLS when offered by a server. The client and server certificates can be identical. Certificates
can be obtained from a certificate authority or created with the help of OpenSSL. The required format
for certificates and private keys is PEM. To allow for automatic startup of MeTA1, private keys must be
stored unencrypted. The keys are only protected by the permissions of the file system, hence they should
not be readable by anyone but the owner. If server and client share the same key it is ok to make the
key group readable however. Never make a private key available to a third party.

-r--r--r-- 1 root wheel CAcert.pem

-r--r--r-- 1 meta1s meta1c smcert.pem

-r--r----- 1 meta1s meta1c smkey.pem

drwxr-xr-x 2 root wheel certs/

76

Chapter 12

More About Configuration,
Compilation, Debugging, and
Testing

12.1 Compile Time Options

There are several compile time parameters which might be useful in some situations that are listed below.
Compile time options to turn on additional debugging are listed in section 12.1.5.

12.1.1 Generic

To further restrict the length of syslog(3)messages the compile time options MTA_LOG_LEN and MTA_LOG_LEN_MAX

can be used (see libmta/log.c for the defaults). The macro MTA_LOG_LEN_MAX sets the maximum length
of a syslog(3) message, MTA_LOG_LEN needs only be set if MTA_LOG_LEN_MAX is less than the default
value of MTA_LOG_LEN.

12.1.2 QMGR

To enable QMGR statistics, e.g., number of transactions and recipients that have been handled, set
QMGR STATS.

12.1.3 SMAR

The address resolver imposes limits on the number of MX and A records that it accepts when it does
routing lookups. These macros are:

• MTA DNS MX MAX: maximum number of MX records for a domain,

• MTA DNS A PER MX MAX: maximum number of A records for one MX record,

• MTA DNS A MAX: maximum number of A records for a domain (after performing MX lookups).

77

12.1.4 SMTPS

• SS EHLO ACCESS CHK enables lookups of the EHLO/HELO argument in the access map (Section 3.10,
3b) using the tag ehlo:. This must be enabled at runtime via the flag check ehlo.

12.1.5 Debugging Compile Time Options

There are several compile time parameters to support debugging. An option that applies to all modules
(as they use the same libraries) is MTA HEAP CHECK which turns on various heap checks and keep track of
memory usage.

Other options are specific to a module and can be used to turn on debugging output. Since currently
no logging abstraction is in use, the output is done on a per-module basis (whatever is simplest for the
individual module). These compile time options are:

SC DEBUG SMTPC debugging
SSQ DEBUG SMTPS - QMGR communication debugging
SS DATA DEBUG SMTPS DATA stage debugging
QMGR DEBUG QMGR debugging
SMAR DEBUG SMAR debugging
MTA LIBDNS DEBUG libdns debugging

For details see the source code.

Note: it is possible to set different debug levels for different debug categories in QMGR. For a list of
categories see include/sm/qmgrdbg.h. To set a debug level n for a category c use the option -xc.n. The
general syntax for the parameters is:

debugoptions ::= debugoption [”,” debugoptions]
debugoption ::= range [”.” level]
range ::= first [”-” last]

If level is omitted, it defaults to 1. Example: -x1-3.4,5.3,9-11

A simple way to set compile time options is to use:

$ CFLAGS="-DSM_HEAP_CHECK" $PATHTO/meta1-$VERSION/configure

A more complicated example is:

$ CFLAGS="-O -g -DSM_HEAP_CHECK -I/usr/local/include" \

LDFLAGS="-L/usr/local/lib" \

$PATHTO/meta1-$VERSION/configure

Hint: it is useful to write the command line into a local file that can be reused for subsequent builds and
versions.

Note: if configure has problems with OpenSSL because you do not have KerberosV installed, add

$ CPPFLAGS="-DOPENSSL_NO_KRB5"

78

12.2 Possible Compilation Problems or Warnings

1. If gcc is used as C compiler and full checking is turned on warnings like these are produced:

warning: unknown conversion type character ‘N’ in format

warning: unsigned int format, sm_str_P arg (arg 3)

warning: too many arguments for format

Unfortunately gcc cannot be told about additional format specifiers and hence the misleading
warning might be generated.

2. On some systems the following warning is generated by the compiler:

‘sys_nerr’ is deprecated; use ‘strerror’ or ‘strerror_r’ instead

sys_nerr is used to determine whether it makes sense to invoke strerror(3) at all. The systems
that generate this error do not provide an alternative way to perform this check. Just ignore the
warning or ask the authors of that warning for an alternative way to determine the range of defined
error codes.

12.3 More About Test Programs

12.3.1 More Environment Variables used by Test Programs

• MTA_NAMESERVER: can be used to set a specific nameserver (IPv4 address) in case the simple script
which extracts the first line beginning with nameserver from the file /etc/resolv.conf does not
give the desired result.

• MTA_PMILTER_REGEX_TEST: can be used to enable the tests (make check in chkmts/) for the policy
milter milter-regex provided it is enabled and compiled. Notes:

– this requires that make check is executed in contrib/ before make check in chkmts/.

– make check in contrib/ may fail due to a compilation error for milter-regex.c. If your OS
has yacc(1) (or bison(1) installed then remove that file (milter-regex.c) and try again.
You may have to tell configure to use yacc(1), e.g.,

YACC=yacc ./configure ...

• Some test programs use SMTP servers and sinks listening on an INET port. The default values
for these ports are specified in chkmts/common.sh. If one of the default ports is used by another
program, then the corresponding environment variable must be set as otherwise all related test
programs will fail.

– MTA_SNKPORT: set the port on which the SMTP sink is listening.

– MTA_SRVPORT: set the port on which the SMTP test server is listening.

12.3.2 Other Potential Problems with Test Programs

Some of the test programs may generate warnings, e.g., most of the tree related programs cause compilers
on 32 bit systems to emit a warning integer constant too large which can be ignored.

79

Known Test Program Problems specific to an OS/setup

FreeBSD systems when running in a jail(8) exhibit the following problems:

• The test programs for SMAR which perform DNS lookups can fail because UDP does not work in a
jail(8) as expected. A workaround for this is to use the -U option for smar which can be achieved
by setting the environment variable SMAROPTS to that value.

• Connections from localhost to the SMTP server do not have 127.0.0.1 as source IP address,
but the IP address of a NIC. Hence relaying must be allowed for it by setting the environment
variable MTA SERVER OPTIONS to the option -C and the IP address, e.g., -C 10.2.3.4. Moreover,
because the tests chkmts/t-mts-icr.sh and chkmts/t-mts-ocr.sh rely on connections coming
from 127.0.0.1 they will fail too.

MacOS 10.3.4 has a problem with sigwait(3), see Apple’s bug 3675391; hence MeTA1 does not work
on this OS (and other versions that have the same bug).

80

Chapter 13

Licenses

The main licenses for MeTA1 can be found in the file LICENSE and in the directory license/. Addition-
ally, MeTA1 contains code from other projects whose licenses can be either found in the respective source
files or in statethreads/README for the statethreads library and db-4.3.28.NC/LICENSE for Berkeley
DB. Some source code is licensed under a BSD license which can be found at the begin of those files.

81

Bibliography

[Aßma] Claus Aßmann. Sendmail X. http://www.sendmail.org/%7Eca/email/sm-9-rfh.html.

[Aßmb] Claus Aßmann. Sendmail X: Requirements, Architecture, Functional Specification, Implemen-
tation, and Performance. http://www.sendmail.org/%7Eca/email/sm-X/.

[Ber97] Dan Bernstein. VERP: Variable Envelope Return Paths, 1997.
http://cr.yp.to/proto/verp.txt.

[Cyr] Project Cyrus. http://asg.web.cmu.edu/cyrus/, http://asg.web.cmu.edu/sasl/.

[Fre00] N. Freed. SMTP service extension for command pipelining. RFC 2920, Internet Engineering
Task Force, 2000.

[Gnu] GnuPG. GNU Privacy Guard. http://www.gnupg.org/.

[Hal07] Eric A. Hall. Smtp service extension for per-recipient data responses (prdr). Draft, Internet
Engineering Task Force, 2007.

[Hara] Evan Harris. The next step in the spam control war: Greylisting.
http://greylisting.org/articles/whitepaper.shtml.

[Harb] Evan Harris. Whitelisting. http://greylisting.org/whitelisting.shtml.

[Harc] Daniel Hartmeier. benzedrine.cx - milter-spamd. http://www.benzedrine.cx/milter-spamd.html.

[Hof99] P. Hoffman. SMTP service extension for secure SMTP over TLS. RFC 2487, Internet Engineering
Task Force, 1999.

[Kle01] Simple mail transfer protocol. RFC 2821, Internet Engineering Task Force, 2001.

[MeT] PGP keys. http://www.MeTA1.org/security/PGPKEYS.

[Moc87] P.V. Mockapetris. Domain names - implementation and specification. RFC 1035, Internet
Engineering Task Force, 1987.

[mut] mutt. http://www.mutt.org/.

[MV03] K. Moore and G. Vaudreuil. An Extensible Message Format for Delivery Status Notifications.
RFC 3464, Internet Engineering Task Force, 2003.

[Mye96] John Myers. Local mail transfer protocol. RFC 2033, Internet Engineering Task Force, 1996.

[Mye99] J. Myers. SMTP service extension for authentication. RFC 2554, Internet Engineering Task
Force, 1999.

82

[New04] Chris Newman. ESMTP and LMTP Transmission Types Registration. RFC 3848, Internet
Engineering Task Force, 2004.

[Ope] OpenSSL. http://www.openssl.org/.

[PGP] PGP. http://www.pgp.com/.

[Posa] Jef Poskanzer. graymilter - simple graylist mail filter module.
http://www.acme.com/software/graymilter/.

[Posb] Jef Poskanzer. mini sendmail - accept email on behalf of real sendmail.
http://www.acme.com/software/mini sendmail/.

[SGI01] SGI. State threads for internet applications, 2001. http://state-threads.sourceforge.net/.

[Slea] Berkeley DB 4.4.XX Change Log. http://www.sleepycat.com/update/4.4.XX/if.4.4.XX.html.

[Sleb] Berkeley DB Tutorial and Reference Guide, version 4.3.28. http://www.sleepycat.com/docs/.

[Tok] Michael Tokarev. tinycdb: A package for maintenance of constant databases.
ftp://ftp.corpit.ru/pub/tinycdb/.

[Vau03] G. Vaudreuil. Enhanced mail system status codes. RFC 3463, Internet Engineering Task Force,
2003.

[vdBG] S.R. van den Berg and Philip Guenther. procmail. http://www.procmail.org/.

83

