SLAYER

Multimedia programming platform for Guile Scheme
Version 1.0.0, updated 17 November 2013

Panicz Maciej Godek

Copyright (©) 2013 Panicz Maciej Godek

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, with no
Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included
in the appendix entitled “GNU Free Documentation License”.

Table of Contents

The Slayer Platform............. 1
1 Introduction i i 2
1.1 Getting started e 2
1.2 Invoking SLAY E R . ..o 3
1.3 Trying out the demos. ... 3

2 Direct Layer 5
2.1 Input handling and screen management 5
2,11 KeY MAINES . .o oottt ettt e 6

2.1.2 Implementing persistent inputiiii i 9

2.2 Loading and processing fonts, images and sounds o oo 10
2.2.1 Loading and displaying images.ottt 10

2.2.2 Rendering and displaying text ... i 11

2.2.3 Loading and playing sounds 11

2.3 Diving into 3D graphics 12

3 Widgets 15

4 Plug-ins (SCUM) ... 17

The Slayer Platform

The Slayer Platform

Chapter 1: Introduction 2

1 Introduction

When I was 14, I felt a desperate urge to program computer games. I collected $25 to buy a
book that would teach me programming. It was a huge brick titled “Teach yourself Visual Basic
6.0 in 21 days”, and I soon figured out that I’d need $1000 more to obtain the tools that would
allow me to use the knowledge contained in the book. That I could not afford.

Times have changed a lot since then. Windows 95 is no longer a dictator on desktop computers,
there are many excellent free tools and libraries for developers (often much better than the
proprietary ones), and knowledge on the Web is available to virtually everyone.

However, many tools are much more difficult to learn than they could be, or aren’t available
on as many systems as one could wish. Furthermore, existing soultions frequently impose many
restrictions on the way the things can be done.

SLAYER was conceived to address those issues. It is meant to be an accessible, portable
and extensible multimedia environment that would be suitable for learning as well as game
development and unconventional or highly customizable GUI/multimedia applications. It uses
SDL for portability and is built on top of Guile Scheme for accessibility and extensibility.

In a way SLAYER can resemble fluxus'. There are however some essential differences between
those systems. Fluxus is intended to work mainly with 3D-graphics, while SLAYER works with
2D objects just as fine. Fluxus has a built-in editor, while SLAYER is kept minimalistic and
only allows to add an editor widget to the stage, which perhaps makes it more flexible. (By the
way, such widget is already provided and used in one of the demos.) Also, fluxus is focused on
live coding and sound processing, but there are no good sound processing libraries for SLAYER
yet.

Lastly, SLAYER works with Guile Scheme, and fluxus uses Racket. These are both Scheme-
based languages, but their extensions are incompatible with each other. They’re both cool,
though.

1.1 Getting started

This section assumes that SLAYER is already installed and properly configured on your system,
and that you are familiar with programming in general, and Guile Scheme in particular.

To get the grasp on how SLAYER works, we’ll create a simple application for browsing images?.

In order to do so, we need to create a text file; let’s call it “image-browser.scm”3. Let’s fill the
file with the following content:

(use-modules (slayer) (slayer image)

(srfi srfi-1) (srfi srfi-2))
(keydn ’esc quit)

(define (list-directory path)
(let ((dir (opendir path)))
(unfold eof-object? (lambda(f) (string-append path f))
(lambda x (readdir dir)) (readdir dir))))

(define (file? f) (eq? ’regular (stat:type (stat f))))

www.pawfal.org/fluxus/

The idea for this program was inspired by Thien-Thi Nguyen, who placed a similar program in the manual for
the Guile-SDL package

SLAYER uses Scheme programming language, so it is convinient to name files with .scm extension, because
various editors can detect that and load appropreate editing mode

www.pawfal.org/fluxus/

Chapter 1: Introduction 3

(define *directory* (if (defined? ’$1) $1 "/usr/share/pixmaps/"))
(define *image-names* (filter file? (list-directory *directoryx*)))
(define *current-image* #f)

(define *image-index* 0)

(if (<= (length *image-namesx) 0)
(begin (display "no images found\n") (quit)))

(set-display-procedure! (lambda () (draw-image! *current-imagex 0 0)))

(define (show-image! i)
(set! ximage-index* (modulo i (length *image-namesx)))
(and-let* ((image-name (list-ref *image-names* *image-indexx*))
(image (load-image image-name)))
(set! *current-image* image)
(apply set-screen-size! (image-size *current-imagex))
(set-window-title! image-name)))

(show-image! 0)

(keydn ’left (lambda () (show-image! (+ *image-index* 1))))
(keydn ’right (lambda () (show-image! (- *image-index* 1))))

In order to execute the program, one shall type:
$ slayer image-browser.scm

The argument to set-display-procedure! is executed after a series of events has been pro-
cessed — so evey time an event occurs (like keyboard or mouse input, or window resize, or timer
event), the whole screen is wiped and its content is displayed on the screen from scratch.

While this might seem a waste of resources, this is a desired behaviour for the class of applications
that SLAYER aims to deliver, i.e. 3d games and real-time multimedia processing apps. Since
the input can be gathered during the redisplay stage, the applications generally tend to be
responsive.

1.2 Invoking SLAYER
Type slayer —--help to get the list of possible options.

(TODO: this section definitely requires some elaboration)

1.3 Trying out the demos

In addition to the core SLAYER and some libraries, SLAYER comes with a set of demos that
show how easily complex things can be achieved. They are located in the “demos” subdirectory.
Note however, that the demos are available only if you obtained SLAYER source from the
repository, and are not contained in the release tarball.

If you manage to build SLAYER (even without installing it), you can run the demos with the
following commands (assuming you’re in the “demos” dir):

$./slayer # equivalent to ./slayer slayer.scm
$./slayer -e3d
$./slayer pong.scm

If you have Open Dynamics Engine installed on your system, you can also try building the (scum
physics) module by entering “src/scum” dir and typing

Chapter 1: Introduction 4

$ make

If you manage to build it successfully, then, back in the “demos” dir, you can try it out by
typing:

$./slayer -e3d ode.scm

Note however, that the (scum physics) module isn’t bundled with the tarball and needs to be
obtained from the mercurial repository:

$ hg clone http://hg.gnu.org.ua/hgweb/slayer

More importantly than just playing with the demos (which, honestly, can become boring quite
quickly), you are encouraged to read their source code (which, in turn, is a fascinating and
endless endeavour). In particular, the “guile-modules/widgets/3d-view.scm” module defines a
file format for representing 3d mesh (an example can be found in the “demos/art/3d/cube.3d”
file), and the scum/physics.scm defines a “define-rigs-for” procedure, which is used to implement
a file format for representing rigs (see “demos/art/rigs/car.rig” to see a more advanced example,
or “demos/arg/rigs/ground.rig” for hopelessly simple one)

Chapter 2: Direct Layer 5

2 Direct Layer

In order to make SLAYER useful, you need to attach event handlers to certain events. If you
are willing to create a real-time simulation, you may also wish to run a timer that generates its
own events. In this chapter, you will find a description of all procedures available directly from
SLAYER, divided into three groups:

2.1 Input handling and screen management

Once SLAYER is up and running, it has one window where everything is displayed, and which
gathers all the input. If you want to use procedures described here, you need to (use-modules
(slayer)).

In order to get something displayed on the screen, you need to set a display procedure of your
liking.

set-display-procedure! thunk [Procedure]
Sets thunk to be called after each series of events is handled and the screen is wiped.

screen-size [Procedure]
Return a list containing width and height of the window, in pixels.

set-screen-size! width height [Procedure]
Set the screen size to width times height pixels. It causes a screen resize event, which can be
handled using set-resize-procedure!.

set-resize-procedure! proc [Procedure]
Sets the binary procedure proc to be invoked on window resize event. proc takes two argu-
ments, namely — the new width and height of the screen.

set-exit-procedure! proc [Procedure]
Sets the proc procedure to be called on exit. Due to historical reasons, proc currently takes
one argument, which should be ignored.

set-window-title! string [Procedure]
Sets the window caption to string. This can only be visible if SLAYER is run in a window
manager, in non-fullscreen mode.

keydn key [thunk] [Procedure]
Set thunk to be invoked whenever key is pressed (including mouse buttons). key can either
be a string or a symbol. If thunk is not given, or is given but is not a procedure, it returns
the current procedure set for a given key. Section 2.1.1 [Key names], page 6 table to get the
names of specific keys.

keyup key thunk [Procedure]
This function works exactly as keydn, except that the thunk is invoked on key release.

mousemove proc [Procedure]
Set proc to be invoked whenever mouse is moved. proc takes four arguments: (x y dx dy),
where (x y) is the current mouse position and (dx dy) is the difference between the previous
and the current position. If proc not given, returns the current procedure.

modifier-pressed? modifier [Procedure]
Checks whether modifier is pressed. modifier is a symbol that can be either shift, rshift,
1shift, alt, lalt, ralt, ctrl, lctrl, rctrl, meta, lmeta, rmeta.

Chapter 2: Direct Layer 6

input-mode [Procedure]
Return the symbol describing current input mode, which can either be ’typing or ’direct.
Direct mode is the default for SLAYER.

set-direct-input-mode! [Procedure]
Sets the input mode to “direct”, which means that events are generated only when keys are

actually pressed, which is the desired behaviour for most games, and the default behaviour
of SLAYER.

set-typing-input-mode! [Procedure]
Sets the input mode to “typing”, which means that the keyboard input behaves like when
typing in an editor — once a key is pressed, after a certain time it gets repeated at a certain
frequency. In typing mode, pressing printable characters do not cause the procedures specified
with keydn and keyup to be called; instead, it causes the typed character to be written to cur-
rent output port, or it invokes a procedure specified with set-typing-special-procedure!
to be called with the pressed special key name as argument.

set-typing-special-procedure! proc [Procedure]
When in typing mode, proc will be called whenever a special (i.e. non-printable, e.g. return,
escape of F1) key is pressed or repeated. proc will receive one argument: the name of the
special key that was pressed (as a string).

grab-input! state [Procedure]
If state is given and not #f, the procedure causes the SLAYER window to grab all the
keyboard and mouse input. This can be deactivated and brought back to normal by passing
#f as state. When state is not given, the procedure only returns the current state.

register-userevent! proc [Procedure]
Register a new user event. The proc procedure will be called with zero, one or two argu-
ments, depending on the way the corresponding generate-userevent! procedure is called.
register-userevent! returns an identifier of user event (which happens to be an integer).
Up to 255 user events can be registered. Note also, that the procedure add-timer! can be
used to generate an user event periodically.

generate-userevent! identifier [datal] [dataZ2)] [Procedure]
Generate user event identified with identifier, obtained with a previous call to register-
userevent. The datal and data2 arguments are passed to event handler if provided.

add-timer! ms proc [Procedure]
Generate a new user-event to be called periodically at interval of ms miliseconds, and install
proc as a handler for the newly-created event. Returns the id of this new event.

remove-timer! id [Procedure]
Remove a timer with the id id obtained by prior call to add-timer!. Returns #t on success
and #£f on failute.

2.1.1 Key names

The names of the keys are usually rather intuitive: ’a names the key A, "1" names the key 1,
and so on. Note that, although usually the names can be given as symbols, in some cases the
string representation is required, like in the case of digits, punctuation marks or brackets. Note
also, that not all these characters will be accessible through the event subsystem in direct mode
(it should depend on the keyboard layout): for instance, if exclamation mark is obtained by
pressing shift and "1’ (in typing mode), only the events related with pressing shift and ’1” will
be generated (in direct mode).

Chapter 2: Direct Layer

SLAYER NAME

"mouse-left"
"mouse-right"
"mouse-middle"
"mwheelup"
"mwheeldown"

"backspace"
"tab"
"clear"
"return"
"pause"
"esc"
"space"
n | "

n \ nn

ll# n

||$n

u&u

non

n (n

n) "

nkn

ll+ll

n_n

)
nn

u/n
non
nyn
non
n3n
nn
ngn
ngn
nn
ngn
ngn

n.n
Y

ngn
||>_n
u"?u
ng"
n [u
n\\n
u] n

nen

ASCII VALUE

777

COMMON NAME (SDL)

left mouse button
right mouse button

middle mouse button

mouse wheel up
mouse wheel down

backspace
tab

clear

return

pause

escape

space
exclaim
quotedbl
hash

dollar
ampersand
quote

left parenthesis
right parenthesis
asterisk

plus sign
minus sign
comma
period
forward slash

[an}

© 00~ O UL W N+

colon
semicolon
less-than sign
equals sign
greater-than sign
question mark
at

left bracket
slash

right bracket
caret
underscore
grave

Chapter 2: Direct Layer

llyll

llle
"delete"
"num0"
"numl1"
"num?2"
"numd3"
"num4"
"numH"
"num6"
"num?7"
"numg&"
"num9"
"num."
"num/"
"nurn* n
"num-"
"num+"
"numret"
"num="
llupll
"down"
"left"
"right"
"ins"
"home"
"end"

n pgup n

N‘<Ng<CﬁmHQ’UOEE’_W‘L""“U‘U@"“CDD-OU‘@?

delete

keypad 0
keypad 1
keypad 2
keypad 3
keypad 4
keypad 5
keypad 6
keypad 7
keypad 8
keypad 9
keypad period
keypad divide
keypad multiply
keypad minus
keypad plus
keypad enter
keypad equals
up arrow
down arrow
left arrow
right arrow
insert

home

end

page up

Chapter 2: Direct Layer 9

"pgdown" page down
vy F1

nfn F2

"f3n F3

"4 F4

llf5|| F5

"fo" F6

nf7n F7

Rtk F8

"o F9

"f10" F10

vf1L F11

"f12n F12

"f13" F13

"fi4" F14

"f15" F15
"numlock" numlock
"caps" capslock
"scroll" scrollock
"Ishift" left shift
"rshift" right shift
"letrl" left ctrl
"rctrl" right ctrl
"lalt" left alt
"ralt" right alt
"lmeta" left meta
"rmeta" right meta
"lsuper" left windows key
"rsuper" right windows key
"mode" mode shift
"help" help
"print" print screen
"sysrq" SysRq
"break" break
"menu" menu
"power" power
"euro" euro

2.1.2 Implementing persistent input

The keydn and keyup procedures register event handlers that are called whenever a certain
key is pressed or released. It can sometimes be desired, however, to call a certain procedure
“persistently”, i.e. as long as a given key is pressed.

SLAYER itself doesn’t provide such procedures, because they frequently depend on a specific
application. However, this document provides a general solution that can be taylored to one’s
needs.

(use-modules (slayer))

;; we need to keep track on which keys are pressed, in the *modes* hash table.|j
;3 1ts keys are the names of pressed keys, and values —-- the procedures that
;; are meant to be called "persistently"

Chapter 2: Direct Layer 10

(define *modes* (make-hash-table))

;; we also need to be able to define a procedure to be called as long as the

;3 key is pressed

(define (key name proc)
(keydn name (lambda() (hash-set! *modes* name proc)))
(keyup name (lambda() (hash-remove! *modes* name))))

;3 lastly, we shall invoke procedures corresponding to the pressed keys with

;3 a certain period, say, 30 miliseconds:
(add-timer! 30 (hash-for-each (lambda(key thunk) (thunk)) *modes*))

;; now we can bind keys to persistent procedures:
(key ’return
(lambda Q)
(display (string-append "this message will be printed"
" for as long as ’return is pressed\n"))))

2.2 Loading and processing fonts, images and sounds

When creating a multimedia application, it is inevitable to work with external data, such as
sounds and images. It can also be strongly desired to be able to render text to images and
display it on the screen.

The following sections describe how to perform those activities in SLAYER.

2.2.1 Loading and displaying images

In order to be able to use the procedures documented here, one shall (use-modules (slayer
image)). The module provides a symbol slayer-image to use with cond-expand (srfi-0).

load-image path [Procedure]
Loads an image from an external file, indicated by path. The supported file formats depend
on the way the SDL_image library was compiled. The procedure returns an object that
represents the image internally, and can be used with draw-image! and other procedures.
FIXME: if something goes wrong (i.e. the file doesn’t exist), the application will probably
crash.

draw-image! image x y [Procedure]
Display image on the screen. Its top left corner will be located at (x, y).

rectangle w h color [Procedure]
Generates and returns solid rectangle whose width is w, height h and color is color. color is
a 32-bit integer value, which can be written as #xAARRGGBB, where AA means alpha channel,
RR is red component, GG — green component, and BB — blue component.

image-size image [Procedure]
Returns (width height) of the image.

image->array image [Procedure]
Converts image to two-dimensional uniform array of integers.

array->image array [Procedure]
Converts two-dimensional uniform array of integers to image.

Chapter 2: Direct Layer 11

decompose-color-to-rgba color [Procedure]
Return a list of (red green blue alpha) components of 32-bit integer color. The returned
values range between 0 and 255, the higher being more intensive.

compose-color-from-rgba red green blue alpha [Procedure]
Return a 32-bit integer value (as elements of the array returned by image->array are) that
represents color with red, green, blue and alpha components.

2.2.2 Rendering and displaying text

In order to be able to use the procedures documented here, one shall (use-modules (slayer
font)).

load-font path pt-size [Procedure]
Load TrueType font from a file indicated by path. The size of the font will be pt-size. Returns
the object representing font, which can later be used for rendering text using render-text
procedure.

render-text text font [color] [bgcolor] [Procedure]
Returns a new image containing text rendered using font with color (which defaults to white).
If bgcolor is given, it will become the background color of the image; otherwise, the back-
ground is transparent. The obtained image can be displayed on the screen using draw-image!.

font-line-skip font [Procedure]
Returns the line skip (integer) defined by the font.

2.2.3 Loading and playing sounds

In order to be able to use the procedures documented here, one needs to (use-modules (slayer
audio)). The module provides a symbol slayer-audio for cond-expand (srfi-0).

load-sound path [Procedure]
Loads a sound file indicated by path. It ought to be a wave file.

play-sound! sound [Procedure]
Plays a specified sound, which has previously been loaded using the load-sound procedure.
Many sound files can be played at once.

load-music path [Procedure]
Loads a music file indicated by path. It can be mp3 or ogg file.

play-music! music [Procedure]
Plays a specified music, which has previously been loaded using load-music procedure. Only
one music track can be played at once, and it can be paused using pause-music! procedure.

pause-music! [Procedure]
Pauses currently played music track (if any).

resume-music! [Procedure]
Resumes previously paused music track (if any).

Chapter 2: Direct Layer 12

2.3 Diving into 3D graphics

Apart from the elementary support for images, SLAYER also allows to use OpenGL display
context and exports some of the OpenGL/GLU procedures.

In order to use it, SLAYER needs to operate in 3d mode. This can be achieved by running it
with -e3d or --extension 3d command line argument, provided that SLAYER has been built
with OpenGL support. It is also possible to compile SLAYER so that it runs in 3d mode by
default.

To recognise whether or not the 3d mode is available, one can check for the presence of slayer-
3d-available symbol within cond-expand form (srfi-0). Furthermore, if 3d mode is enabled,
the slayer-3d is provided.

If you’re not familiar with the OpenGL library, I recommend you to read at least the first three
chapters of the OpenGL Programming Guide, also known as The Red Book!.

Note, that programming in SLAYER differs in a few ways from the raw OpenGL API. Firstly,
many OpenGL tutorials use “glBegin”, “glEnd”, “glVertex™” and similar procedures. SLAYER
does not support them. Instead, it forces you to use its wrappers for “glVertexPointer”, “glCol-
orPointer”, “glDrawElements” and so on, which makes it a little bit more difficult for beginners,
but results in a more concise code. (There are also higher level interface functions available in
(extra 3d) and (widgets 3d-view) modules)

Secondly, because of Guile’s more informative data types, it is unnecessary to maintain so
many variants of the same procedure (like “glColor3f”, “glColor4f”, “glColor3du”, “glColor4i”)
— SLAYER chooses the appropreate variant depending on the type of the argument.

Thirdly, OpenGL doesn’t allow to choose to perform operations on the projection matrix stack:
only modelview matrix is available to the procedures like “push-matrix!”, “pop-matrix!” or
“multiply-matrix!”; the “glMatrixMode” procedure is unavailable to the programmer, because
I didn’t find that useful at all.

multiply-matrix! M [Procedure]
Multiply current modelview matrix by 4x4 uniform array M containing floats or doubles.

push-matrix! [Procedure]
Push current modelview matrix on the matrix stack.

pop—matrix! [Procedure]
Pop modelview matrix from the stack.

load-identity! [Procedure]
Set current modelview matrix to identity.

translate-view! vector [Procedure]
Add a translation vector of 3 numbers to current modelview matrix.

rotate-view! quaternion [Procedure]
Rotate current matrix by quaternion. Quaternions are represented by pairs, whose first
element is the real scalar, and second — the imaginary vector, but this representation may
change in the future?.

set-viewport! xy wh [Procedure]
Set left upper corner of viewport to (x, y) and its dimensions to (w, h). Note that this differs
from OpenGL’s viewport, because the origin is the upper left corner, and not in the lower
left.

http://www.glprogramming.com/red/

To find out more about how quaternions can be used to represent rotations in the 3d space, see e.g.
http://www.genesis3d.com/ kdtop/Quaternions-UsingToRepresentRotation.htm

http://www.glprogramming.com/red/
http://www.genesis3d.com/~kdtop/Quaternions-UsingToRepresentRotation.htm

Chapter 2: Direct Layer 13

current-viewport [Procedure]
Return a list (x y w h) describing the current viewport. Again, origin is located in the upper
left corner, contrary to OpenGL’s convention.

set-perspective-projection! fovy [aspect] [near| [far] [Procedure]
Set the projection matrix to calculate perspective projection, where horizontal field of view
is specified with fovy. If aspect isn’t given, it is calculated according to current viewport, to
preserve natural aspect ratio; the near clipping plane defaults to 0.1, and far — to 1000.0.

set-orthographic-projection! Ileft right bottom top [near| [far] [Procedure]
Sets the projection matrix to calculate ortographic projection. If near and far not given,
they default to -1.0 and 1.0, respectively.

set-vertex-array! array [Procedure]
Sets current vertex pointer to the two dimensional uniform array of vertices to use it with the
draw-faces! procedure. The first dimension of the array specifies the number of vertices,
and the second — the number of coordinates (from 2 to 4), so for instance if array is #2£32((0
00)(111)), it will be interpreted as an array containing two three-dimensional vertices:
(0, 0, 0) and (1, 1, 1). The uniform array can be of any real type, so it can be either 32,
64, 32, u32, s16, ul6, s8 or u8. This procedure enables GL_VERTEX_ARRAY client state.

set-color-array! array [Procedure]
Sets current color pointer to the two-dimensional uniform array of color parameters, that can
either have 3 or 4 parameters (the fourth value will be interpreted as alpha channel). The
remaining notes from set-vertex-array! apply here as well (mutatis mutandis).

set-normal-array! array [Procedure]
Sets current normal pointer to the two-dimensional uniform array of normal vectors. The
vectors must be three-dimensional. The remaining notes from set-vertex-array! apply
here as well (mutatis mutandis).

set-texture-coord-array! array [Procedure]
I implemented this procedure, because it was similar to the ones above, but I really don’t
know what it does. It has never been used nor tested, so if you would like to use it, I wish
you all best!

draw-faces! type indices [Procedure]
Draws vertices from the array set using set-vertices-array!, interpreted depending on the
value of the type parameter, in the order specified in the uniform array of integer indices
(which can be either u8, ul6 or u32, and the dimension of which is irrelevant). The type
is a symbol that can have one of the following values: points, lines, line-strip, line-
loop, triangles, triangle-strip, triangle-fan, quads, quad-strip, polygon (consult
OpenGL reference for details).

forget-array! type [Procedure]
Forget a pointer to the array specified in type, so that draw-faces! won’t take it into
consideration. Possible values of type are the following symbols: vertex-array, color-
array, texture-coord-array, normal-array.

set-color! color [Procedure]
Sets the current display color to color, which can either be a uniform vector containing
three or four elements, or an integer, interpreted as in the rectangle function from (slayer
image).

Chapter 2: Direct Layer 14

make-light- [Procedure]
Allocate new light. Once the light is allocated, various properties can be set using set-
light-property! procedure. When the light is no longer needed, it is desirable to remove
it using remove-light!.

remove-light! Ilight [Procedure]
Remove light allocated by make-light- procedure (or its derivatives). It is desirable to
remove lights in the opposite order to their allocation order.

set-light-property! light property value [Procedure]
Set the light’s property to value. The supported properties (symbols) are similar to param-
eters of glLightf*, but the ’position and ’direction parameters differ slightly.

*property™ *value type™ *description™

"ambient #£32(r g b a) ambient intensity

"diffuse #£32(r g b a) diffuse intensity

‘specular #£32(r g b a) specular intensity

'position #£32(x y z) or #£ light position; if #£f, then the
light is directional

"direction #£32(x y 2) direction of light

"cutoff real spotlight cutoff angle in
degrees (for positional
lights). The value of

180.0 causes spherical,
non-directiona light.

‘exponent real
‘constant-attenuation real
'linear-attenuation real
‘quadratic-attenuation real

I realize that the above list of procedures might be insufficient for certain purposes. If you notice
that an essential procedure is lacking here, don’t hesitate to let me know about it, and we can
try to work out a solution.

Chapter 3: Widgets 15

3 Widgets

When developing a graphics user interface based application, it is convinient to assemble it from
simple and elastic components, such as buttons, text areas, draggable icons, canvases, menus,
windows and so on. The common name for these components is “widget”. SLAYER is shipped
with its own framework for creating and using widgets.

In order to use the widget framework, one shall (use-modules (widgets base)). It creates and
exports the main widget under the symbol *stage*, and sets the appropriate display and resize
procedures, as well as handlers for mousel and mouse2 press and release events and mousemove
event.

It also contains a definition of a <widget> class, which is the base class for all widgets. Here’s
a simplified definition of <widget> class (in fact, all event handler slots are initialized to noop,
and their init keywords correspond strictly to their names):

(define-class <widget> ()
(parent #:init-value #f #:init-keyword #:parent)
(children #:init-value ’() #:init-keyword #:children)

;; event handlers (initialized to noop)
left-mouse-down
left-mouse-up
right-mouse-down
right-mouse-up
mouse—-over
mouse-out

drag

update!

activate
deactivate
resize

(x #:init-value
(y #:init-value
(w #:init-value
(h #:init-value

:init-keyword #:x)
rinit-keyword #:y)
rinit-keyword #:w)
:init-keyword #:h))

O O O O
H H H H

As you can see, the widget structure is hierarchical: all widgets (except *stage*) have their
parent, and some can have their children. The biggest part of the definition consists of some event
handlers, which are called in certain situations (like clicking, dragging and so on). Furthermore,
all widgets have rectangular shape, and the rectangle should be big enough to fit all of the
widget’s children (otherwise they can become unreachable).

In order to use the widget framework, it is enough to load the desired widget modules and add
their instances to *stage* using the (add-child! *stage* /instance-of-a-widget/). The
simplest program that uses widgets — a draggable rectangle — could look like this:

(use-modules (slayer) (slayer image)
(widgets base) (widgets bitmap)
(oop goops))

(keydn ’esc quit)

(define-method (dragger (w <widget>))
(lambda (x y xrel yrel)
(slot-set! w ’x (+ (slot-ref w ’x) xrel))

Chapter 3: Widgets 16

(slot-set! w ’y (+ (slot-ref w ’y) yrel))))

(letx ((rect (rectangle #;w 50 #;h 50 #;color #xcc33dd))
(img (make-image rect #;x 50 #;y 50)))
(slot-set! img ’drag (dragger img))
(add-child! *stage* img))
There are a few widgets already bundled with slayer, among which there is <text-area> widget
(which still requires some work) and <3d-view> widget.
Check the slayer.scm demo to see how to use them.

Note also, that although the direct layer described in the previous chapter is rather stable and
will only be extended rather than modified, the widget layer is more likely to change.

Chapter 4: Plug-ins (SCUM) 17

4 Plug-ins (SCUM)

Currently SLAYER is shipped with one additional module — a wrapper for the prominent Open
Dynamics Engine, which is required for the module to build. The module is located outside
the build tree, so it doesn’t get installed by default, but requires additional effort. (This should
change in the future)

In order to build the module, one needs to enter the src/scum directory from the installation
package, and type: $ make

If everything goes well, a file named “physics.so” will be created. In order to run, it should
be moved to a path specified in the LTDL_LIBRARY_PATH environment variable, and the

accompanyign file, “physics.scm” should be placed in a “scum” directory within the range of
GUILE_LOAD_PATH environment variable.

	The Slayer Platform
	Introduction
	Getting started
	Invoking SLAYER
	Trying out the demos

	Direct Layer
	Input handling and screen management
	Key names
	Implementing persistent input

	Loading and processing fonts, images and sounds
	Loading and displaying images
	Rendering and displaying text
	Loading and playing sounds

	Diving into 3D graphics

	Widgets
	Plug-ins (SCUM)

